DNA microarray expression analysis and data mining for blood cancer

被引:0
|
作者
Li, Dongguang [1 ]
机构
[1] Edith Cowan Univ, Sch Comp & Informat Sci, Mt Lawley, WA 6050, Australia
关键词
gene expression; microarray; data mining; blood cancer; soft computing; leukemia;
D O I
10.1109/FBIE.2008.68
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The paper systematically presents how to discover useful information based on the DNA microarray expression data collected from mouse experiments for the leukemia research. The BCR-ABL oncogene is the cause of Ph+ leukemia. The BCR gene, on chromosome 22, breaks either at exon 1, exon 12/13, or exon 19 and fuses to the c-ABL gene on chromosome 9 to form, respectively, three types of BCR-ABL chimerical gene: P190, P210, or P230. Each of the three forms of the BCR-ABL oncogene is associated with a distinct type of human leukemia. An introduction to knowledge discovery from microarray experimental datasets has been provided. Specifically, the fold change analysis is discussed, step by step, based on the microarray data obtained from the mouse experiments of P190, P210 and P230. Many Soft computing methodologies, involving fuzzy sets, neural networks, genetic algorithms, rough sets, wavelets, and their hybridizations, have recently been suggested to provide approximate solutions at low cost, thereby speeding up the process.
引用
收藏
页码:377 / 381
页数:5
相关论文
共 50 条
  • [1] Analysis of DNA microarray expression data
    Simon, Richard
    [J]. BEST PRACTICE & RESEARCH CLINICAL HAEMATOLOGY, 2009, 22 (02) : 271 - 282
  • [2] Mining Functional Biclusters of DNA Microarray Gene Expression Data
    Zhao, Hongya
    Huang, Qing-Hua
    Chan, Kwok Leung
    Cheng, Lee-Ming
    Yan, Hong
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 1736 - 1741
  • [3] Data mining for gene expression profiles from DNA, microarray
    Cho, SB
    Won, HH
    [J]. INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2003, 13 (06) : 593 - 608
  • [4] Control analysis of DNA microarray expression data
    Curtis, RK
    Brand, MD
    [J]. MOLECULAR BIOLOGY REPORTS, 2002, 29 (1-2) : 67 - 71
  • [5] Control Analysis of DNA Microarray Expression Data
    R. Keira Curtis
    Martin D. Brand
    [J]. Molecular Biology Reports, 2002, 29 : 67 - 71
  • [6] Differential analysis of DNA microarray gene expression data
    Hatfield, GW
    Hung, SP
    Baldi, P
    [J]. MOLECULAR MICROBIOLOGY, 2003, 47 (04) : 871 - 877
  • [7] Statistical analysis of DNA Microarray data in cancer research
    Fan, Jianqing
    Ren, Yi
    [J]. CLINICAL CANCER RESEARCH, 2006, 12 (15) : 4469 - 4473
  • [8] Data mining and visualisation of microarray gene expression data
    Alan Robinson
    Alvis Brazma
    [J]. Nature Genetics, 1999, 23 (Suppl 3) : 71 - 71
  • [9] Microarray analysis of gene expression: considerations in data mining and statistical treatment
    Verducci, Joseph S.
    Melfi, Vincent F.
    Lin, Shili
    Wang, Zailong
    Roy, Sashwati
    Sen, Chandan K.
    [J]. PHYSIOLOGICAL GENOMICS, 2006, 25 (03) : 355 - 363
  • [10] Mining microarray expression data by literature profiling
    Damien Chaussabel
    Alan Sher
    [J]. Genome Biology, 3 (10):