Mining Functional Biclusters of DNA Microarray Gene Expression Data

被引:0
|
作者
Zhao, Hongya [1 ]
Huang, Qing-Hua [1 ]
Chan, Kwok Leung [1 ]
Cheng, Lee-Ming [1 ]
Yan, Hong [1 ]
机构
[1] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
关键词
Biclustering; Hough transform; pair-column space; gene functional module; gene ontology (GO);
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A subset of genes sharing compatible expression patterns under a subset of conditions can be found from DNA microarray data using biclustering algorithms. In this paper, we present a novel geometrical biclustering algorithm in combination with gene ontology annotations to identify the gene functional biclusters. Unlike many existing biclustering algorithms, we first consider the biclustering patterns through geometrical interpretation. Such a perspective makes it possible to unify the formulation of different types of biclusters as hyperplanes in spatial space and facilitates the use of a generic plane finding algorithm for bicluster detection. In our bottom-up biclustering algorithm, the well-known Hough transform is first employed in pair-column spaces to reduce the computation complexity and then the resulting patterns are merged step by step into large-size biclusters incorporated with gene functional modules. The algorithm integrates the numerical characteristics in a gene expression matrix and the gene functions in the biological activities. Our experiments on real data show that the new algorithm outperforms most existing methods for mining gene functional biclusters.
引用
收藏
页码:1736 / 1741
页数:6
相关论文
共 50 条
  • [1] Mining deterministic biclusters in gene expression data
    Zhang, ZH
    Teo, A
    Ooi, BC
    Tan, KL
    [J]. BIBE 2004: FOURTH IEEE SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING, PROCEEDINGS, 2004, : 283 - 290
  • [2] Data mining for gene expression profiles from DNA, microarray
    Cho, SB
    Won, HH
    [J]. INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2003, 13 (06) : 593 - 608
  • [3] A Condition-Enumeration Tree method for mining biclusters from DNA microarray data sets
    Chen, Jiun-Rung
    Chang, Ye-In
    [J]. BIOSYSTEMS, 2009, 97 (01) : 44 - 59
  • [4] Data mining and visualisation of microarray gene expression data
    Alan Robinson
    Alvis Brazma
    [J]. Nature Genetics, 1999, 23 (Suppl 3) : 71 - 71
  • [5] Discriminatory mining of gene expression microarray data
    Wang, ZY
    Wang, Y
    Lu, JP
    Kung, SY
    Zhang, JY
    Lee, R
    Xuan, JH
    Khan, JV
    [J]. JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2003, 35 (03): : 255 - 272
  • [6] Discriminatory Mining of Gene Expression Microarray Data
    Zuyi Wang
    Yue Wang
    Jianping Lu
    Sun-Yuan Kung
    Junying Zhang
    Richard Lee
    Jianhua Xuan
    Javed Khan
    Robert Clarke
    [J]. Journal of VLSI signal processing systems for signal, image and video technology, 2003, 35 : 255 - 272
  • [7] Efficient mining differential co-expression biclusters in microarray datasets
    Wang, Miao
    Shang, Xuequn
    Li, Xiaoyuan
    Liu, Wenbin
    Li, Zhanhuai
    [J]. GENE, 2013, 518 (01) : 59 - 69
  • [8] Discovering significant biclusters in gene expression data
    Zalik, Krista Rizman
    [J]. WSEAS Transactions on Information Science and Applications, 2005, 2 (09): : 1454 - 1461
  • [9] A memetic algorithm for discovering negative correlation biclusters of DNA microarray data
    Ayadi, Wassim
    Hao, Jin-Kao
    [J]. NEUROCOMPUTING, 2014, 145 : 14 - 22
  • [10] Statistical identification of biclusters in gene expression data
    Chakraborty, A
    [J]. Proceedings of the 8th Joint Conference on Information Sciences, Vols 1-3, 2005, : 1185 - 1190