Mining Functional Biclusters of DNA Microarray Gene Expression Data

被引:0
|
作者
Zhao, Hongya [1 ]
Huang, Qing-Hua [1 ]
Chan, Kwok Leung [1 ]
Cheng, Lee-Ming [1 ]
Yan, Hong [1 ]
机构
[1] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
关键词
Biclustering; Hough transform; pair-column space; gene functional module; gene ontology (GO);
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A subset of genes sharing compatible expression patterns under a subset of conditions can be found from DNA microarray data using biclustering algorithms. In this paper, we present a novel geometrical biclustering algorithm in combination with gene ontology annotations to identify the gene functional biclusters. Unlike many existing biclustering algorithms, we first consider the biclustering patterns through geometrical interpretation. Such a perspective makes it possible to unify the formulation of different types of biclusters as hyperplanes in spatial space and facilitates the use of a generic plane finding algorithm for bicluster detection. In our bottom-up biclustering algorithm, the well-known Hough transform is first employed in pair-column spaces to reduce the computation complexity and then the resulting patterns are merged step by step into large-size biclusters incorporated with gene functional modules. The algorithm integrates the numerical characteristics in a gene expression matrix and the gene functions in the biological activities. Our experiments on real data show that the new algorithm outperforms most existing methods for mining gene functional biclusters.
引用
收藏
页码:1736 / 1741
页数:6
相关论文
共 50 条
  • [21] BiMine+: An efficient algorithm for discovering relevant biclusters of DNA microarray data
    Ayadi, Wassim
    Ellourni, Mourad
    Hao, Jin Kao
    [J]. KNOWLEDGE-BASED SYSTEMS, 2012, 35 : 224 - 234
  • [22] Pleiotropic microarray gene expression data: advanced tandem multivariate data mining
    Little, BB
    Barner, E
    Dobson, AT
    [J]. DATA MINING VI: DATA MINING, TEXT MINING AND THEIR BUSINESS APPLICATIONS, 2005, : 257 - 264
  • [23] Finding Correlated Biclusters from Gene Expression Data
    Yang, Wen-Hui
    Dai, Dao-Qing
    Yan, Hong
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2011, 23 (04) : 568 - 584
  • [24] A Top-K formal concepts-based algorithm for mining positive and negative correlation biclusters of DNA microarray data
    Houari, Amina
    Ben Yahia, Sadok
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (03) : 941 - 962
  • [25] Extraction of Optimal Biclusters from Gene Expression Data
    Bagyamani, J.
    Thangavel, K.
    Rathipriya, R.
    [J]. INFORMATION AND COMMUNICATION TECHNOLOGIES, 2010, 101 : 380 - +
  • [26] A Top-K formal concepts-based algorithm for mining positive and negative correlation biclusters of DNA microarray data
    Amina Houari
    Sadok Ben Yahia
    [J]. International Journal of Machine Learning and Cybernetics, 2024, 15 : 941 - 962
  • [27] Data mining of gene expression microarray via weighted prefix trees
    Trang, T
    Chi, NC
    Minh, HN
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2005, 3518 : 21 - 31
  • [28] Microarray analysis of gene expression: considerations in data mining and statistical treatment
    Verducci, Joseph S.
    Melfi, Vincent F.
    Lin, Shili
    Wang, Zailong
    Roy, Sashwati
    Sen, Chandan K.
    [J]. PHYSIOLOGICAL GENOMICS, 2006, 25 (03) : 355 - 363
  • [29] Discriminative mining of gene microarray data
    Lu, JP
    Wang, Y
    Wang, ZY
    Xuan, JH
    Kung, SY
    Gu, ZP
    Clarke, R
    [J]. NEURAL NETWORKS FOR SIGNAL PROCESSING XI, 2001, : 23 - 32
  • [30] Functional clustering of genes using microarray gene expression data
    Paul Spellman
    Audrey Gasch
    Michael Eisen
    Camilla Kao
    Patrick Brown
    David Botstein
    [J]. Nature Genetics, 1999, 23 (Suppl 3) : 75 - 75