Survival analysis of microarray expression data by transformation models

被引:9
|
作者
Xu, JF [1 ]
Yang, YN
Ott, J
机构
[1] Columbia Univ, Dept Stat, New York, NY 10027 USA
[2] Rockefeller Univ, Lab Stat Genet, New York, NY 10021 USA
[3] Univ Sci & Technol China, Dept Stat & Finance, Anhua 230026, Peoples R China
关键词
microarray; proportional hazards model; transformation models;
D O I
10.1016/j.compbiolchem.2005.02.001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many microarray experiments involve examining the time elapsed prior to the occurrence of a specific event. One purpose of these studies is to relate the gene expressions to the survival times. The Cox proportional hazards model has been the major tool for analyzing such data. The transformation model provides a viable alternative to the classical Cox's model. We investigate the use of transformation models in microarray survival data in this paper. The transformation model, which can be viewed as a generalization of proportional hazards model and the proportional odds model, is more robust than the proportional hazards model, because it is not susceptible to erroneous results for cases when the assumption of proportional hazards is violated. We analyze a gene expression dataset from Beer et al. [Beer, D.G., Kardia, S.L., Huang, C.C., Giordano, T.J., Levin, A.M., Misek, D.E., Lin, L., Chen, G., Gharib, T.G., Thomas, D.G., Lizyness, M.L., Kuick, R., Hayasaka, S., Taylor, J.M., lannettoni, M.D., Orringer, M.B., Hanash, S., 2002. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med. 8 (8), 816-824] and show that the transformation model provides higher prediction precision than the proportional hazards model. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:91 / 94
页数:4
相关论文
共 50 条
  • [41] ANALYSIS OF COHORT SURVIVAL DATA WITH TRANSFORMATION MODEL
    Chen, Kani
    Sun, Liuquan
    Tong, Xingwei
    STATISTICA SINICA, 2012, 22 (02) : 489 - 508
  • [42] Probabilistic lung cancer models conditioned on gene expression microarray data
    Friedman, C
    Cao, WB
    Fan, C
    METHODS OF MICROARRAY DATA ANALYSIS IV, 2005, : 133 - 146
  • [43] A class of semiparametric transformation models for survival data with a cured proportion
    Choi, Sangbum
    Huang, Xuelin
    Chen, Yi-Hau
    LIFETIME DATA ANALYSIS, 2014, 20 (03) : 369 - 386
  • [44] A class of semiparametric transformation models for survival data with a cured proportion
    Sangbum Choi
    Xuelin Huang
    Yi-Hau Chen
    Lifetime Data Analysis, 2014, 20 : 369 - 386
  • [45] Semiparametric normal transformation models for spatially correlated survival data
    Li, Yi
    Lin, Xihong
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (474) : 591 - 603
  • [46] Microarray analysis of gene expression during epithelial-mesenchymal transformation
    LaGamba, D
    Nawshad, A
    Hay, ED
    DEVELOPMENTAL DYNAMICS, 2005, 234 (01) : 132 - 142
  • [47] Insights into the multistep transformation of MGUS to myeloma using microarray expression analysis
    Davies, FE
    Dring, AM
    Li, C
    Rawstron, AC
    Shammas, MA
    O'Connor, SM
    Fenton, JAL
    Hideshima, T
    Chauhan, D
    Tai, IT
    Robinson, E
    Auclair, D
    Rees, K
    Gonzalez, D
    Ashcroft, AJ
    Dasgupta, R
    Mitsiades, C
    Mitsiades, N
    Chen, LB
    Wong, WH
    Munshi, NC
    Morgan, GJ
    Anderson, KC
    BLOOD, 2003, 102 (13) : 4504 - 4511
  • [48] Boosting method for nonlinear transformation models with censored survival data
    Lu, Wenbin
    Li, Lexin
    BIOSTATISTICS, 2008, 9 (04) : 658 - 667
  • [49] Cluster analysis using multivariate normal mixture models to detect differential gene expression with microarray data
    He, Yi
    Pan, Wei
    Lin, Jizhen
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (02) : 641 - 658
  • [50] Estimation of transformation parameters for microarray data
    Durbin, B
    Rocke, DM
    BIOINFORMATICS, 2003, 19 (11) : 1360 - 1367