Survival analysis of microarray expression data by transformation models

被引:9
|
作者
Xu, JF [1 ]
Yang, YN
Ott, J
机构
[1] Columbia Univ, Dept Stat, New York, NY 10027 USA
[2] Rockefeller Univ, Lab Stat Genet, New York, NY 10021 USA
[3] Univ Sci & Technol China, Dept Stat & Finance, Anhua 230026, Peoples R China
关键词
microarray; proportional hazards model; transformation models;
D O I
10.1016/j.compbiolchem.2005.02.001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many microarray experiments involve examining the time elapsed prior to the occurrence of a specific event. One purpose of these studies is to relate the gene expressions to the survival times. The Cox proportional hazards model has been the major tool for analyzing such data. The transformation model provides a viable alternative to the classical Cox's model. We investigate the use of transformation models in microarray survival data in this paper. The transformation model, which can be viewed as a generalization of proportional hazards model and the proportional odds model, is more robust than the proportional hazards model, because it is not susceptible to erroneous results for cases when the assumption of proportional hazards is violated. We analyze a gene expression dataset from Beer et al. [Beer, D.G., Kardia, S.L., Huang, C.C., Giordano, T.J., Levin, A.M., Misek, D.E., Lin, L., Chen, G., Gharib, T.G., Thomas, D.G., Lizyness, M.L., Kuick, R., Hayasaka, S., Taylor, J.M., lannettoni, M.D., Orringer, M.B., Hanash, S., 2002. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med. 8 (8), 816-824] and show that the transformation model provides higher prediction precision than the proportional hazards model. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:91 / 94
页数:4
相关论文
共 50 条
  • [11] Bayesian models for gene expression with DNA microarray data
    Ibrahim, JG
    Chen, MH
    Gray, RJ
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) : 88 - 99
  • [12] Covariance structure models for gene expression microarray data
    Xie, J
    Bentler, PM
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2003, 10 (04) : 566 - 582
  • [13] Analysis of microarray data using Z score transformation
    Cheadle, C
    Vawter, MP
    Freed, WJ
    Becker, KG
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2003, 5 (02): : 73 - 81
  • [14] MGraph: graphical models for microarray data analysis
    Wang, JB
    Myklebost, O
    Hovig, E
    BIOINFORMATICS, 2003, 19 (17) : 2210 - 2211
  • [15] Impact of DNA microarray data transformation on gene expression analysis - comparison of two normalization methods
    Schmidt, Marcin T.
    Handschuh, Luiza
    Zyprych, Joanna
    Szabelska, Alicja
    Olejnik-Schmidt, Agnieszka K.
    Siatkowski, Idzi
    Figlerowicz, Marek
    ACTA BIOCHIMICA POLONICA, 2011, 58 (04) : 573 - 580
  • [16] Microarray Data Analysis for Differential Expression: a Tutorial
    Suarez, Erick
    Burguete, Ana
    Mclachlan, Geoffrey J.
    PUERTO RICO HEALTH SCIENCES JOURNAL, 2009, 28 (02) : 89 - 104
  • [17] Cross species analysis of microarray expression data
    Lu, Yong
    Huggins, Peter
    Bar-Joseph, Ziv
    BIOINFORMATICS, 2009, 25 (12) : 1476 - 1483
  • [18] Analysis of variance for gene expression microarray data
    Kerr, MK
    Martin, M
    Churchill, GA
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2000, 7 (06) : 819 - 837
  • [19] Microarray Data Analysis of Gene Expression Evolution
    Lin, Honghuang
    GENE REGULATION AND SYSTEMS BIOLOGY, 2009, 3 : 211 - 214
  • [20] Control analysis of DNA microarray expression data
    Curtis, RK
    Brand, MD
    MOLECULAR BIOLOGY REPORTS, 2002, 29 (1-2) : 67 - 71