Independence and hamiltonicity in 3-domination-critical graphs

被引:1
|
作者
Favaron, O [1 ]
Tian, F [1 ]
Zhang, L [1 ]
机构
[1] ACAD SINICA,INST SYST SCI,BEIJING 100080,PEOPLES R CHINA
关键词
domination; independence; Hamiltonicity;
D O I
10.1002/(SICI)1097-0118(199707)25:3<173::AID-JGT1>3.3.CO;2-D
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let delta, gamma, i and alpha be respectively the minimum degree, the domination number, the independent domination number and the independence number of a graph G. The graph G is 3-gamma-critical if gamma = 3 and the addition of any edge decreases gamma by 1. It was conjectured that any connected 3-gamma-critical graph satisfies i = gamma, and is hamiltonian if delta greater than or equal to 2. We show here that every connected 3-gamma-critical graph G with delta greater than or equal to 2 satisfies alpha less than or equal to delta + 2; if alpha = delta + 2 then i = gamma; while if alpha less than or equal to delta + 1 then G is hamiltonian. (C) 1997 John Wiley & Sons, Inc.
引用
收藏
页码:173 / 184
页数:12
相关论文
共 50 条
  • [41] On average lower independence and domination numbers in graphs
    Blidia, M
    Chellali, M
    Maffray, F
    DISCRETE MATHEMATICS, 2005, 295 (1-3) : 1 - 11
  • [42] On the independence transversal total domination number of graphs
    Cabrera Martinez, Abel
    Sigarreta Almira, Jose M.
    Yero, Ismael G.
    DISCRETE APPLIED MATHEMATICS, 2017, 219 : 65 - 73
  • [43] Parameterized complexity of independence and domination on geometric graphs
    Marx, Daniel
    PARAMETERIZED AND EXACT COMPUTATION, PROCEEDINGS, 2006, 4169 : 154 - 165
  • [44] FRACTIONAL INDEPENDENCE AND FRACTIONAL DOMINATION CHAIN IN GRAPHS
    Arumugam, S.
    Rejikumar, K.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2007, 4 (02) : 161 - 169
  • [45] On global domination critical graphs
    Dutton, Ronald D.
    Brigham, Robert C.
    DISCRETE MATHEMATICS, 2009, 309 (19) : 5894 - 5897
  • [46] DOMINATION GAME CRITICAL GRAPHS
    Bujtas, Csilla
    Klavzar, Sandi
    Kosmrlj, Gasper
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (04) : 781 - 796
  • [47] VERTEX DOMINATION CRITICAL GRAPHS
    BRIGHAM, RC
    CHINN, PZ
    DUTTON, RD
    NETWORKS, 1988, 18 (03) : 173 - 179
  • [48] A generalization of domination critical graphs
    Phillips, JB
    Haynes, TW
    Slater, PJ
    UTILITAS MATHEMATICA, 2000, 58 : 129 - 144
  • [49] Domination Critical Knodel Graphs
    Mojdeh, D. A.
    Musawi, S. R.
    Nazari, E.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A5): : 2423 - 2428
  • [50] Hamiltonicity of 3-Arc Graphs
    Xu, Guangjun
    Zhou, Sanming
    GRAPHS AND COMBINATORICS, 2014, 30 (05) : 1283 - 1299