Parameterized complexity of independence and domination on geometric graphs

被引:0
|
作者
Marx, Daniel [1 ]
机构
[1] Humboldt Univ, Inst Informat, D-10099 Berlin, Germany
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate the parameterized complexity of MAXIMUM INDEPENDENT SET and DOMINATING SET restricted to certain geometric graphs. We show that DOMINATING SET is W[l]-hard for the intersection graphs of unit squares, unit disks, and line segments. For MAXIMUM INDEPENDENT SET, we show that the problem is W[l]-complete for unit segments, but fixed-parameter tractable if the segments axe axis-parallel.
引用
收藏
页码:154 / 165
页数:12
相关论文
共 50 条
  • [1] Parameterized Complexity for Domination Problems on Degenerate Graphs
    Golovach, Petr A.
    Villanger, Yngve
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2008, 5344 : 195 - 205
  • [2] A geometric approach to parameterized algorithms for domination problems on planar graphs
    Fernau, H
    Juedes, D
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2004, PROCEEDINGS, 2004, 3153 : 488 - 499
  • [3] Parameterized Domination in Circle Graphs
    Bousquet, Nicolas
    Goncalves, Daniel
    Mertzios, George B.
    Paul, Christophe
    Sau, Ignasi
    Thomasse, Stephan
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2012, 7551 : 308 - 319
  • [4] Parameterized Domination in Circle Graphs
    Nicolas Bousquet
    Daniel Gonçalves
    George B. Mertzios
    Christophe Paul
    Ignasi Sau
    Stéphan Thomassé
    Theory of Computing Systems, 2014, 54 : 45 - 72
  • [5] Parameterized Domination in Circle Graphs
    Bousquet, Nicolas
    Goncalves, Daniel
    Mertzios, George B.
    Paul, Christophe
    Sau, Ignasi
    Thomasse, Stephan
    THEORY OF COMPUTING SYSTEMS, 2014, 54 (01) : 45 - 72
  • [6] On the Parameterized Complexity of Minus Domination
    Bhyravarapu, Sriram
    Kanesh, Lawqueen
    Mohanapriya, A.
    Purohit, Nidhi
    Sadagopan, N.
    Saurabh, Saket
    SOFSEM 2024: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2024, 14519 : 96 - 110
  • [7] Parameterized Complexity of Paired Domination
    Andreev, Nikita
    Bliznets, Ivan
    Kundu, Madhumita
    Saurabh, Saket
    Tripathi, Vikash
    Verma, Shaily
    COMBINATORIAL ALGORITHMS, IWOCA 2024, 2024, 14764 : 523 - 536
  • [8] Parameterized power domination complexity
    Kneis, J
    Mölle, D
    Richter, S
    Rossmanith, P
    INFORMATION PROCESSING LETTERS, 2006, 98 (04) : 145 - 149
  • [9] Parameterized complexity in multiple-interval graphs: Domination, partition, separation, irredundancy
    Jiang, Minghui
    Zhang, Yong
    THEORETICAL COMPUTER SCIENCE, 2012, 461 : 27 - 44
  • [10] Parameterized complexity of generalized domination problems
    Golovach, Petr A.
    Kratochvil, Jan
    Suchy, Ondrej
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (06) : 780 - 792