Independence and hamiltonicity in 3-domination-critical graphs

被引:1
|
作者
Favaron, O [1 ]
Tian, F [1 ]
Zhang, L [1 ]
机构
[1] ACAD SINICA,INST SYST SCI,BEIJING 100080,PEOPLES R CHINA
关键词
domination; independence; Hamiltonicity;
D O I
10.1002/(SICI)1097-0118(199707)25:3<173::AID-JGT1>3.3.CO;2-D
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let delta, gamma, i and alpha be respectively the minimum degree, the domination number, the independent domination number and the independence number of a graph G. The graph G is 3-gamma-critical if gamma = 3 and the addition of any edge decreases gamma by 1. It was conjectured that any connected 3-gamma-critical graph satisfies i = gamma, and is hamiltonian if delta greater than or equal to 2. We show here that every connected 3-gamma-critical graph G with delta greater than or equal to 2 satisfies alpha less than or equal to delta + 2; if alpha = delta + 2 then i = gamma; while if alpha less than or equal to delta + 1 then G is hamiltonian. (C) 1997 John Wiley & Sons, Inc.
引用
收藏
页码:173 / 184
页数:12
相关论文
共 50 条
  • [31] New results on 3-domination critical graphs
    Balbuena, Camino
    Hansberg, Adriana
    AEQUATIONES MATHEMATICAE, 2012, 83 (03) : 257 - 269
  • [32] On graphs with equal domination and edge independence numbers
    Volkmann, L
    ARS COMBINATORIA, 1995, 41 : 45 - 56
  • [33] CONTRIBUTIONS TO THE THEORY OF DOMINATION, INDEPENDENCE AND IRREDUNDANCE IN GRAPHS
    COCKAYNE, EJ
    FAVARON, O
    PAYAN, C
    THOMASON, AG
    DISCRETE MATHEMATICS, 1981, 33 (03) : 249 - 258
  • [34] INDEPENDENCE SATURATION AND EXTENDED DOMINATION CHAIN IN GRAPHS
    Arumugam, S.
    Subramanian, M.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2007, 4 (02) : 171 - 181
  • [35] Independence-domination duality in weighted graphs
    Aharoni, Ron
    Gorelik, Irina
    DISCRETE MATHEMATICS, 2018, 341 (08) : 2332 - 2336
  • [36] Graphs with equal Grundy domination and independence number
    Bacso, Gabor
    Bresar, Bostjan
    Kuenzel, Kirsti
    Rall, Douglas F.
    DISCRETE OPTIMIZATION, 2023, 48
  • [37] Independence and 2-domination in bipartite graphs
    Fujisawa, Jun
    Hansberg, Adriana
    Kub, Takahiro
    Saito, Akira
    Sugita, Masahide
    Volkmann, Lutz
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2008, 40 : 265 - 268
  • [38] Secure domination critical graphs
    Grobler, P. J. P.
    Mynhardt, C. M.
    DISCRETE MATHEMATICS, 2009, 309 (19) : 5820 - 5827
  • [39] Connected domination critical graphs
    Chen, XG
    Sun, L
    Ma, DX
    APPLIED MATHEMATICS LETTERS, 2004, 17 (05) : 503 - 507
  • [40] Connected domination critical graphs
    Chen, Xue-Gang
    Sun, Liang
    Ma, De-Xiang
    Applied Mathematics Letters, 2004, 17 (06) : 503 - 507