Secure domination critical graphs

被引:22
|
作者
Grobler, P. J. P. [2 ]
Mynhardt, C. M. [1 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] Univ Stellenbosch, Dept Math Sci, ZA-7602 Matieland, South Africa
基金
加拿大自然科学与工程研究理事会;
关键词
Secure domination; Protection of a graph; Edge-removal-critical graph; ER-critical graph; ROMAN-EMPIRE; PROTECTION; TREES;
D O I
10.1016/j.disc.2008.05.050
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Secure dominating set X of a graph G is a dominating set with the property that each vertex u is an element of V-G - X is adjacent to a vertex nu is an element of X such that (X - {nu}) U {u} is dominating. The minimum cardinality of such a set is called the secure domination number, denoted by gamma(s)(G). We are interested in the effect of edge removal on gamma(s)(G), and characterize gamma(s) ER-critical graphs, i.e. graphs for which gamma(s)(G - e) > gamma(s)(G) for any edge e of G, bipartite gamma(s)-ER-critical graphs and gamma(s)-ER-critical trees. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:5820 / 5827
页数:8
相关论文
共 50 条
  • [1] On Secure Domination in Graphs
    Merouane, Houcine Boumediene
    Chellali, Mustapha
    INFORMATION PROCESSING LETTERS, 2015, 115 (10) : 786 - 790
  • [2] Secure connected domination and secure total domination in unit disk graphs and rectangle graphs ✩
    Wang, Cai-Xia
    Yang, Yu
    Xu, Shou-Jun
    THEORETICAL COMPUTER SCIENCE, 2023, 957
  • [3] Secure Italian domination in graphs
    M. Dettlaff
    M. Lemańska
    J. A. Rodríguez-Velázquez
    Journal of Combinatorial Optimization, 2021, 41 : 56 - 72
  • [4] SECURE PAIRED DOMINATION IN GRAPHS
    Kang, Jian
    Mynhardt, C. M.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2014, 11 (02) : 177 - 197
  • [5] Secure Italian domination in graphs
    Dettlaff, M.
    Lemanska, M.
    Rodriguez-Velazquez, J. A.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 41 (01) : 56 - 72
  • [6] SECURE HOP DOMINATION IN GRAPHS
    Mollejon, Reynaldo, V
    Canoy Jr, Sergio R.
    Canoy, John Gabriel E.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2019, 18 (12): : 1651 - 1663
  • [7] Secure total domination in graphs
    Benecke, S.
    Cockayne, E. J.
    Mynhardt, C. M.
    UTILITAS MATHEMATICA, 2007, 74 : 247 - 259
  • [8] SECURE DOMINATION IN MYCEILSKI GRAPHS
    Mercy, J. Annaal
    Raj, L. Benedict Michael
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 : 539 - 545
  • [9] Secure Restrained Domination in Graphs
    Pushpam P.R.L.
    Suseendran C.
    Mathematics in Computer Science, 2015, 9 (2) : 239 - 247
  • [10] Co-Secure and Secure Domination in Graphs
    Arumugam, S.
    Ebadi, Karam
    Manrique, Martin
    UTILITAS MATHEMATICA, 2014, 94 : 167 - 182