Secure domination critical graphs

被引:22
|
作者
Grobler, P. J. P. [2 ]
Mynhardt, C. M. [1 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] Univ Stellenbosch, Dept Math Sci, ZA-7602 Matieland, South Africa
基金
加拿大自然科学与工程研究理事会;
关键词
Secure domination; Protection of a graph; Edge-removal-critical graph; ER-critical graph; ROMAN-EMPIRE; PROTECTION; TREES;
D O I
10.1016/j.disc.2008.05.050
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Secure dominating set X of a graph G is a dominating set with the property that each vertex u is an element of V-G - X is adjacent to a vertex nu is an element of X such that (X - {nu}) U {u} is dominating. The minimum cardinality of such a set is called the secure domination number, denoted by gamma(s)(G). We are interested in the effect of edge removal on gamma(s)(G), and characterize gamma(s) ER-critical graphs, i.e. graphs for which gamma(s)(G - e) > gamma(s)(G) for any edge e of G, bipartite gamma(s)-ER-critical graphs and gamma(s)-ER-critical trees. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:5820 / 5827
页数:8
相关论文
共 50 条
  • [21] SECURE POINT SET DOMINATION IN GRAPHS
    Gupta, Purnima
    Goyal, Alka
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2024, 14 (02): : 605 - 617
  • [22] Connected domination critical graphs
    Chen, XG
    Sun, L
    Ma, DX
    APPLIED MATHEMATICS LETTERS, 2004, 17 (05) : 503 - 507
  • [23] Connected domination critical graphs
    Chen, Xue-Gang
    Sun, Liang
    Ma, De-Xiang
    Applied Mathematics Letters, 2004, 17 (06) : 503 - 507
  • [24] On global domination critical graphs
    Dutton, Ronald D.
    Brigham, Robert C.
    DISCRETE MATHEMATICS, 2009, 309 (19) : 5894 - 5897
  • [25] A generalization of domination critical graphs
    Phillips, JB
    Haynes, TW
    Slater, PJ
    UTILITAS MATHEMATICA, 2000, 58 : 129 - 144
  • [26] DOMINATION GAME CRITICAL GRAPHS
    Bujtas, Csilla
    Klavzar, Sandi
    Kosmrlj, Gasper
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (04) : 781 - 796
  • [27] VERTEX DOMINATION CRITICAL GRAPHS
    BRIGHAM, RC
    CHINN, PZ
    DUTTON, RD
    NETWORKS, 1988, 18 (03) : 173 - 179
  • [28] Domination Critical Knodel Graphs
    Mojdeh, D. A.
    Musawi, S. R.
    Nazari, E.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A5): : 2423 - 2428
  • [29] Secure total domination in graphs: Bounds and complexity
    Duginov, Oleg
    DISCRETE APPLIED MATHEMATICS, 2017, 222 : 97 - 108
  • [30] Algorithmic complexity of secure connected domination in graphs
    Kumar, J. Pavan
    Reddy, P. Venkata Subba
    Arumugam, S.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 1010 - 1013