On global domination critical graphs

被引:11
|
作者
Dutton, Ronald D. [1 ]
Brigham, Robert C. [1 ]
机构
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
Domination; Global domination; Changing and unchanging;
D O I
10.1016/j.disc.2008.06.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A dominating set of a graph G = (V, E) is a subset S subset of V such that every vertex not in S is adjacent to at least one vertex of S. The domination number of G is the cardinality of a smallest dominating set. The global domination number, gamma(g)(G), is the cardinality, of a smallest set S that is simultaneously a dominating set of both G and its complement (G) over bar. Graphs for which gamma(g)(G - e) > gamma(g)(G) for all edges e is an element of E are characterized, as are graphs for which gamma(e)(G - e) < gamma(e)(G) for all edges e is an element of E whenever <(G)over bar> is disconnected. Progress is reported in the latter case when (G) over bar is connected. Published by Elsevier B.V.
引用
收藏
页码:5894 / 5897
页数:4
相关论文
共 50 条
  • [1] Global Domination Edge Critical Graphs
    Desormeaux, Wyatt J.
    Haynest, Teresa W.
    van der Merwe, Lucas
    UTILITAS MATHEMATICA, 2017, 104 : 151 - 160
  • [2] DOMINATION CRITICAL GRAPHS
    WALIKAR, HB
    ACHARYA, BD
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 1979, 2 (02): : 70 - 72
  • [3] DOMINATION CRITICAL GRAPHS
    SUMNER, DP
    BLITCH, P
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 34 (01) : 65 - 76
  • [4] Secure domination critical graphs
    Grobler, P. J. P.
    Mynhardt, C. M.
    DISCRETE MATHEMATICS, 2009, 309 (19) : 5820 - 5827
  • [5] Connected domination critical graphs
    Chen, XG
    Sun, L
    Ma, DX
    APPLIED MATHEMATICS LETTERS, 2004, 17 (05) : 503 - 507
  • [6] Connected domination critical graphs
    Chen, Xue-Gang
    Sun, Liang
    Ma, De-Xiang
    Applied Mathematics Letters, 2004, 17 (06) : 503 - 507
  • [7] DOMINATION GAME CRITICAL GRAPHS
    Bujtas, Csilla
    Klavzar, Sandi
    Kosmrlj, Gasper
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (04) : 781 - 796
  • [8] VERTEX DOMINATION CRITICAL GRAPHS
    BRIGHAM, RC
    CHINN, PZ
    DUTTON, RD
    NETWORKS, 1988, 18 (03) : 173 - 179
  • [9] A generalization of domination critical graphs
    Phillips, JB
    Haynes, TW
    Slater, PJ
    UTILITAS MATHEMATICA, 2000, 58 : 129 - 144
  • [10] Global Roman domination in graphs
    Pushpam, P. Roushini Leely
    Padmapriea, S.
    DISCRETE APPLIED MATHEMATICS, 2016, 200 : 176 - 185