Independence and hamiltonicity in 3-domination-critical graphs

被引:1
|
作者
Favaron, O [1 ]
Tian, F [1 ]
Zhang, L [1 ]
机构
[1] ACAD SINICA,INST SYST SCI,BEIJING 100080,PEOPLES R CHINA
关键词
domination; independence; Hamiltonicity;
D O I
10.1002/(SICI)1097-0118(199707)25:3<173::AID-JGT1>3.3.CO;2-D
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let delta, gamma, i and alpha be respectively the minimum degree, the domination number, the independent domination number and the independence number of a graph G. The graph G is 3-gamma-critical if gamma = 3 and the addition of any edge decreases gamma by 1. It was conjectured that any connected 3-gamma-critical graph satisfies i = gamma, and is hamiltonian if delta greater than or equal to 2. We show here that every connected 3-gamma-critical graph G with delta greater than or equal to 2 satisfies alpha less than or equal to delta + 2; if alpha = delta + 2 then i = gamma; while if alpha less than or equal to delta + 1 then G is hamiltonian. (C) 1997 John Wiley & Sons, Inc.
引用
收藏
页码:173 / 184
页数:12
相关论文
共 50 条
  • [21] Complexity of domination, hamiltonicity and treewidth for tree convex bipartite graphs
    Chen, Hao
    Lei, Zihan
    Liu, Tian
    Tang, Ziyang
    Wang, Chaoyi
    Xu, Ke
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 32 (01) : 95 - 110
  • [22] DOMINATION CRITICAL GRAPHS
    WALIKAR, HB
    ACHARYA, BD
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 1979, 2 (02): : 70 - 72
  • [23] DOMINATION CRITICAL GRAPHS
    SUMNER, DP
    BLITCH, P
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 34 (01) : 65 - 76
  • [24] Independence and domination separation on chessboard graphs
    Chatham, R. Douglas
    Doyle, Maureen
    Fricke, Gerd H.
    Reitmann, Jon
    Skaggs, R. Duane
    Wolff, Matthew
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2009, 68 : 3 - 17
  • [25] Independence and k-domination in graphs
    Hansberg, Adriana
    Meierling, Dirk
    Volkmann, Lutz
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (05) : 905 - 915
  • [26] INDEPENDENCE AND DOMINATION IN PATH GRAPHS OF TREES
    Niepel, Ludovit
    Cerny, Anton
    COMPUTING AND INFORMATICS, 2008, 27 (04) : 581 - 591
  • [27] Hamiltonicity, diameter, domination, packing, and biclique partitions of Mycielski's graphs
    Fisher, DC
    McKenna, PA
    Boyer, ED
    DISCRETE APPLIED MATHEMATICS, 1998, 84 (1-3) : 93 - 105
  • [28] Hamiltonicity of edge-chromatic critical graphs
    Cao, Yan
    Chen, Guantao
    Jiang, Suyun
    Liu, Huiqing
    Lu, Fuliang
    DISCRETE MATHEMATICS, 2020, 343 (07)
  • [29] 3-Factor-criticality in domination critical graphs
    Ananchuen, Nawarat
    Plummer, Michael D.
    DISCRETE MATHEMATICS, 2007, 307 (23) : 3006 - 3015
  • [30] New results on 3-domination critical graphs
    Camino Balbuena
    Adriana Hansberg
    Aequationes mathematicae, 2012, 83 : 257 - 269