DISP6D: Disentangled Implicit Shape and Pose Learning for Scalable 6D Pose Estimation

被引:6
|
作者
Wen, Yilin [1 ]
Li, Xiangyu [2 ]
Pan, Hao [3 ]
Yang, Lei [1 ,4 ]
Wang, Zheng [5 ]
Komura, Taku [1 ]
Wang, Wenping [6 ]
机构
[1] Univ Hong Kong, Hong Kong, Peoples R China
[2] Brown Univ, Providence, RI 02912 USA
[3] Microsoft Res Asia, Beijing, Peoples R China
[4] Ctr Garment Prod Ltd, Hong Kong, Peoples R China
[5] SUSTech, Shenzhen, Peoples R China
[6] Texas A&M Univ, College Stn, TX USA
来源
关键词
6D pose estimation; Scalability; Disentanglement; Symmetry ambiguity; Re-entanglement; Sim-to-real; REPRESENTATION;
D O I
10.1007/978-3-031-20077-9_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Scalable 6D pose estimation for rigid objects from RGB images aims at handling multiple objects and generalizing to novel objects. Building on a well-known auto-encoding framework to cope with object symmetry and the lack of labeled training data, we achieve scalability by disentangling the latent representation of auto-encoder into shape and pose sub-spaces. The latent shape space models the similarity of different objects through contrastive metric learning, and the latent pose code is compared with canonical rotations for rotation retrieval. Because different object symmetries induce inconsistent latent pose spaces, we re-entangle the shape representation with canonical rotations to generate shape-dependent pose codebooks for rotation retrieval. We show state-of-the-art performance on two benchmarks containing textureless CAD objects without category and daily objects with categories respectively, and further demonstrate improved scalability by extending to a more challenging setting of daily objects across categories.
引用
收藏
页码:404 / 421
页数:18
相关论文
共 50 条
  • [1] Edge Enhanced Implicit Orientation Learning With Geometric Prior for 6D Pose Estimation
    Wen, Yilin
    Pan, Hao
    Yang, Lei
    Wang, Wenping
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (03) : 4931 - 4938
  • [2] On Evaluation of 6D Object Pose Estimation
    Hodan, Tomas
    Matas, Jiri
    Obdrzalek, Stephan
    COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 606 - 619
  • [3] 6D Pose Estimation for Precision Assembly
    Skeik, Ola
    Erden, Mustafa Suphi
    Kong, Xianwen
    2022 IEEE 5TH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING APPLICATIONS AND SYSTEMS, IPAS, 2022,
  • [4] 6D Pose Estimation with Correlation Fusion
    Cheng, Yi
    Zhu, Hongyuan
    Sun, Ying
    Acar, Cihan
    Jing, Wei
    Wu, Yan
    Li, Liyuan
    Tan, Cheston
    Lim, Joo-Hwee
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 2988 - 2994
  • [5] SO(3)-Pose: SO(3)-Equivariance Learning for 6D Object Pose Estimation
    Pan, Haoran
    Zhou, Jun
    Liu, Yuanpeng
    Lu, Xuequan
    Wang, Weiming
    Yan, Xuefeng
    Wei, Mingqiang
    COMPUTER GRAPHICS FORUM, 2022, 41 (07) : 371 - 381
  • [6] Spatial and temporal consistency learning for monocular 6D pose estimation
    Zhang, Hong-Bo
    Liang, Jia-Yu
    Hong, Jia-Xin
    Lei, Qing
    Liu, Jing-Hua
    Du, Ji-Xiang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 131
  • [7] Single Shot 6D Object Pose Estimation
    Kleeberger, Kilian
    Huber, Marco F.
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6239 - 6245
  • [8] BOP: Benchmark for 6D Object Pose Estimation
    Hodan, Tomas
    Michel, Frank
    Brachmann, Eric
    Kehl, Wadim
    Buch, Anders Glent
    Kraft, Dirk
    Drost, Bertram
    Vidal, Joel
    Ihrke, Stephan
    Zabulis, Xenophon
    Sahin, Caner
    Manhardt, Fabian
    Tombari, Federico
    Kim, Tae-Kyun
    Matas, Jiri
    Rother, Carsten
    COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 19 - 35
  • [9] Survey on 6D Pose Estimation of Rigid Object
    Chen, Jiale
    Zhang, Lijun
    Liu, Yi
    Xu, Chi
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7440 - 7445
  • [10] ACCURATE 6D OBJECT POSE ESTIMATION BY POSE CONDITIONED MESH RECONSTRUCTION
    Castro, Pedro
    Armagan, Anil
    Kim, Tae-Kyun
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4147 - 4151