DISP6D: Disentangled Implicit Shape and Pose Learning for Scalable 6D Pose Estimation

被引:6
|
作者
Wen, Yilin [1 ]
Li, Xiangyu [2 ]
Pan, Hao [3 ]
Yang, Lei [1 ,4 ]
Wang, Zheng [5 ]
Komura, Taku [1 ]
Wang, Wenping [6 ]
机构
[1] Univ Hong Kong, Hong Kong, Peoples R China
[2] Brown Univ, Providence, RI 02912 USA
[3] Microsoft Res Asia, Beijing, Peoples R China
[4] Ctr Garment Prod Ltd, Hong Kong, Peoples R China
[5] SUSTech, Shenzhen, Peoples R China
[6] Texas A&M Univ, College Stn, TX USA
来源
关键词
6D pose estimation; Scalability; Disentanglement; Symmetry ambiguity; Re-entanglement; Sim-to-real; REPRESENTATION;
D O I
10.1007/978-3-031-20077-9_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Scalable 6D pose estimation for rigid objects from RGB images aims at handling multiple objects and generalizing to novel objects. Building on a well-known auto-encoding framework to cope with object symmetry and the lack of labeled training data, we achieve scalability by disentangling the latent representation of auto-encoder into shape and pose sub-spaces. The latent shape space models the similarity of different objects through contrastive metric learning, and the latent pose code is compared with canonical rotations for rotation retrieval. Because different object symmetries induce inconsistent latent pose spaces, we re-entangle the shape representation with canonical rotations to generate shape-dependent pose codebooks for rotation retrieval. We show state-of-the-art performance on two benchmarks containing textureless CAD objects without category and daily objects with categories respectively, and further demonstrate improved scalability by extending to a more challenging setting of daily objects across categories.
引用
收藏
页码:404 / 421
页数:18
相关论文
共 50 条
  • [41] MagicCubePose, A more comprehensive 6D pose estimation network
    Li, Fudong
    Gao, Dongyang
    Huang, Qiang
    Li, Wei
    Yang, Yuequan
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [42] ConvPoseCNN: Dense Convolutional 6D Object Pose Estimation
    Capellen, Catherine
    Schwarz, Max
    Behnke, Sven
    PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 5: VISAPP, 2020, : 162 - 172
  • [43] Graph neural network for 6D object pose estimation
    Yin, Pengshuai
    Ye, Jiayong
    Lin, Guoshen
    Wu, Qingyao
    KNOWLEDGE-BASED SYSTEMS, 2021, 218
  • [44] ViHOPE: Visuotactile In-Hand Object 6D Pose Estimation With Shape Completion
    Li, Hongyu
    Dikhale, Snehal
    Iba, Soshi
    Jamali, Nawid
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (11) : 6963 - 6970
  • [45] 6D Pose Estimation of Objects: Recent Technologies and Challenges
    He, Zaixing
    Feng, Wuxi
    Zhao, Xinyue
    Lv, Yongfeng
    APPLIED SCIENCES-BASEL, 2021, 11 (01): : 1 - 18
  • [46] Sparse Keypoint Models for 6D Object Pose Estimation
    Sadran, Emal
    Wurm, Kai M.
    Burschka, Darius
    2013 EUROPEAN CONFERENCE ON MOBILE ROBOTS (ECMR 2013), 2013, : 307 - 312
  • [47] Focal segmentation for robust 6D object pose estimation
    Yuning Ye
    Hanhoon Park
    Multimedia Tools and Applications, 2024, 83 : 47563 - 47585
  • [48] Single-Stage 6D Object Pose Estimation
    Hu, Yinlin
    Fua, Pascal
    Wang, Wei
    Salzmann, Mathieu
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2927 - 2936
  • [49] Weakly Supervised 6D Pose Estimation for Robotic Grasping
    Li, Yaoxin
    Sun, Jinghua
    Li, Xiaoqian
    Zhang, Zhanpeng
    Cheng, Hui
    Wang, Xiaogang
    PROCEEDINGS OF THE 16TH ACM SIGGRAPH INTERNATIONAL CONFERENCE ON VIRTUAL-REALITY CONTINUUM AND ITS APPLICATIONS IN INDUSTRY (VRCAI 2018), 2018,
  • [50] 6D UAV pose estimation for ship landing guidance
    Ferreira, Tiago
    Bernardino, Alexandre
    Damas, Bruno
    OCEANS 2021: SAN DIEGO - PORTO, 2021,