Convergence analysis of Galerkin finite element approximations to shape gradients in eigenvalue optimization

被引:11
|
作者
Zhu, Shengfeng [1 ,2 ]
Hu, Xianliang [3 ]
Liao, Qifeng [4 ]
机构
[1] East China Normal Univ, Sch Math Sci, Dept Data Math, Shanghai 200241, Peoples R China
[2] East China Normal Univ, Sch Math Sci, Shanghai Key Lab Pure Math & Math Practice, Shanghai 200241, Peoples R China
[3] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
[4] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Shape optimization; Shape gradient; Eigenvalue problem; Finite element; Error estimate; Multiple eigenvalue; LEVEL SET METHODS; DESIGN SENSITIVITY;
D O I
10.1007/s10543-019-00782-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper concerns the accuracy of Galerkin finite element approximations to two types of shape gradients for eigenvalue optimization. Under certain regularity assumptions on domains, a priori error estimates are obtained for the two approximate shape gradients. Our convergence analysis shows that the volume integral formula converges faster and offers higher accuracy than the boundary integral formula. Numerical experiments validate the theoretical results for the problem with a pure Dirichlet boundary condition. For the problem with a pure Neumann boundary condition, the boundary formulation numerically converges as fast as the distributed type.
引用
收藏
页码:853 / 878
页数:26
相关论文
共 50 条
  • [21] The convergence of finite element Galerkin solution for the Roseneau equation
    Kim, Y.D.
    Lee, H.Y.
    Journal of Applied Mathematics and Computing, 1998, 5 (01): : 171 - 180
  • [22] CONVERGENCE OF ADAPTIVE FINITE ELEMENT METHODS FOR EIGENVALUE PROBLEMS
    Garau, Eduardo M.
    Morin, Pedro
    Zuppa, Carlos
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2009, 19 (05): : 721 - 747
  • [23] Convergence of finite element Galerkin solution for the Roseneau equation
    Kim, Y.D.
    Lee, H.Y.
    Korean Journal of Computational & Applied Mathematics, 1998, 5 (01): : 171 - 180
  • [24] Finite element approximations of nonlinear eigenvalue problems in quantum physics
    Chen, Huajie
    He, Lianhua
    Zhou, Aihui
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (21-22) : 1846 - 1865
  • [25] The convergence of finite element Galerkin solution for the Roseneau equation
    Y. D. Kim
    H. Y. Lee
    Korean Journal of Computational & Applied Mathematics, 1998, 5 (1): : 171 - 180
  • [26] REGULAR CONVERGENCE AND FINITE ELEMENT METHODS FOR EIGENVALUE PROBLEMS
    Gong, Bo
    Sun, Jiguang
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2023, 58 : 228 - 243
  • [27] Extrapolation of Mixed Finite Element Approximations for the Maxwell Eigenvalue Problem
    Yao, Changhui
    Qiao, Zhonghua
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2011, 4 (03) : 379 - 395
  • [28] Monotone convergence of finite element approximations of obstacle problems
    Zhang, Yongmin
    APPLIED MATHEMATICS LETTERS, 2007, 20 (04) : 445 - 449
  • [29] Convergence of finite element approximations of large eddy motion
    Iliescu, T
    John, V
    Layton, WJ
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2002, 18 (06) : 689 - 710
  • [30] Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations
    Li, Qin
    Lin, Qun
    Xie, Hehu
    APPLICATIONS OF MATHEMATICS, 2013, 58 (02) : 129 - 151