Convergence analysis of Galerkin finite element approximations to shape gradients in eigenvalue optimization

被引:11
|
作者
Zhu, Shengfeng [1 ,2 ]
Hu, Xianliang [3 ]
Liao, Qifeng [4 ]
机构
[1] East China Normal Univ, Sch Math Sci, Dept Data Math, Shanghai 200241, Peoples R China
[2] East China Normal Univ, Sch Math Sci, Shanghai Key Lab Pure Math & Math Practice, Shanghai 200241, Peoples R China
[3] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
[4] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Shape optimization; Shape gradient; Eigenvalue problem; Finite element; Error estimate; Multiple eigenvalue; LEVEL SET METHODS; DESIGN SENSITIVITY;
D O I
10.1007/s10543-019-00782-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper concerns the accuracy of Galerkin finite element approximations to two types of shape gradients for eigenvalue optimization. Under certain regularity assumptions on domains, a priori error estimates are obtained for the two approximate shape gradients. Our convergence analysis shows that the volume integral formula converges faster and offers higher accuracy than the boundary integral formula. Numerical experiments validate the theoretical results for the problem with a pure Dirichlet boundary condition. For the problem with a pure Neumann boundary condition, the boundary formulation numerically converges as fast as the distributed type.
引用
收藏
页码:853 / 878
页数:26
相关论文
共 50 条
  • [31] Finite Element Analysis for Optimization of Arch Dam Shape
    Li Jun
    Wang Yuan-hui
    PROCEEDINGS OF THE 2016 2ND WORKSHOP ON ADVANCED RESEARCH AND TECHNOLOGY IN INDUSTRY APPLICATIONS, 2016, 81 : 809 - 812
  • [32] Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations
    Qin Li
    Qun Lin
    Hehu Xie
    Applications of Mathematics, 2013, 58 : 129 - 151
  • [33] Convergence analysis of the Galerkin finite element method for the fourth-order Rosenau equation
    Shi, Dongyang
    Jia, Xu
    APPLIED MATHEMATICS LETTERS, 2023, 135
  • [34] Finite element Galerkin approximations to a class of nonlinear and nonlocal parabolic problems
    Sharma, Nisha
    Khebchareon, Morrakot
    Sharma, Kapil
    Pani, Amiya K.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (04) : 1232 - 1264
  • [35] Galerkin finite element approximations of stochastic elliptic partial differential equations
    Babuska, I
    Tempone, R
    Zouraris, GE
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) : 800 - 825
  • [36] A posteriori error control for finite element approximations of elliptic eigenvalue problems
    Heuveline, V
    Rannacher, R
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2001, 15 (1-4) : 107 - 138
  • [37] Convergence analysis of a modified weak Galerkin finite element method for Signorini and obstacle problems
    Zeng, Yuping
    Chen, Jinru
    Wang, Feng
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (05) : 1459 - 1474
  • [38] A Domain Decomposition Method for Nonconforming Finite Element Approximations of Eigenvalue Problems
    Liang, Qigang
    Wang, Wei
    Xu, Xuejun
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2025, 7 (02) : 606 - 636
  • [39] A posteriori error control for finite element approximations of elliptic eigenvalue problems
    Vincent Heuveline
    Rolf Rannacher
    Advances in Computational Mathematics, 2001, 15 : 107 - 138
  • [40] Convergence and optimal complexity of adaptive finite element eigenvalue computations
    Dai, Xiaoying
    Xu, Jinchao
    Zhou, Aihui
    NUMERISCHE MATHEMATIK, 2008, 110 (03) : 313 - 355