Convergence analysis of Galerkin finite element approximations to shape gradients in eigenvalue optimization

被引:11
|
作者
Zhu, Shengfeng [1 ,2 ]
Hu, Xianliang [3 ]
Liao, Qifeng [4 ]
机构
[1] East China Normal Univ, Sch Math Sci, Dept Data Math, Shanghai 200241, Peoples R China
[2] East China Normal Univ, Sch Math Sci, Shanghai Key Lab Pure Math & Math Practice, Shanghai 200241, Peoples R China
[3] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
[4] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Shape optimization; Shape gradient; Eigenvalue problem; Finite element; Error estimate; Multiple eigenvalue; LEVEL SET METHODS; DESIGN SENSITIVITY;
D O I
10.1007/s10543-019-00782-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper concerns the accuracy of Galerkin finite element approximations to two types of shape gradients for eigenvalue optimization. Under certain regularity assumptions on domains, a priori error estimates are obtained for the two approximate shape gradients. Our convergence analysis shows that the volume integral formula converges faster and offers higher accuracy than the boundary integral formula. Numerical experiments validate the theoretical results for the problem with a pure Dirichlet boundary condition. For the problem with a pure Neumann boundary condition, the boundary formulation numerically converges as fast as the distributed type.
引用
收藏
页码:853 / 878
页数:26
相关论文
共 50 条
  • [41] Convergence and optimal complexity of adaptive finite element eigenvalue computations
    Xiaoying Dai
    Jinchao Xu
    Aihui Zhou
    Numerische Mathematik, 2008, 110 : 313 - 355
  • [42] A priori and a posteriori error analysis for the mixed discontinuous Galerkin finite element approximations of the biharmonic problems
    Xiong, Chunguang
    Becker, Roland
    Luo, Fusheng
    Ma, Xiuling
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (01) : 318 - 353
  • [43] A Domain Decomposition Method for Nonconforming Finite Element Approximations of Eigenvalue Problems
    Liang, Qigang
    Wang, Wei
    Xu, Xuejun
    Communications on Applied Mathematics and Computation, 2024,
  • [44] Convergence analysis of finite element approximations of the Joule heating problem in three spatial dimensions
    Michael J. Holst
    Mats G. Larson
    Axel Målqvist
    Robert Söderlund
    BIT Numerical Mathematics, 2010, 50 : 781 - 795
  • [45] Computation of shape gradients for mixed finite element formulation
    Delfour, MC
    Zolesio, JP
    Mghazli, Z
    PARTIAL DIFFERENTIAL EQUATION METHODS IN CONTROL AND SHAPE ANALYSIS, 1997, 188 : 77 - 93
  • [46] Convergence analysis of finite element approximations of the Joule heating problem in three spatial dimensions
    Holst, Michael J.
    Larson, Mats G.
    Malqvist, Axel
    Soederlund, Robert
    BIT NUMERICAL MATHEMATICS, 2010, 50 (04) : 781 - 795
  • [47] ON THE CONVERGENCE OF FINITE-ELEMENT APPROXIMATIONS OF A RELAXED VARIATIONAL PROBLEM
    FRENCH, DA
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (02) : 419 - 436
  • [48] CONVERGENCE OF THE DISCRETE FREE BOUNDARIES FOR FINITE-ELEMENT APPROXIMATIONS
    BREZZI, F
    CAFFARELLI, LA
    RAIRO-ANALYSE NUMERIQUE-NUMERICAL ANALYSIS, 1983, 17 (04): : 385 - 395
  • [49] Influence of the finite element discretization error over the convergence of structural shape optimization algorithms
    Bugeda, Gabriel
    Rodenas, Juan J.
    Albelda, Jose
    Onate, Eugenio
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 3909 - +
  • [50] Shape optimization of coronary stents based on Finite Element Analysis
    Lebaal, N.
    Azaouzi, M.
    Roth, S.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2017, 20 : 119 - 120