REGULAR CONVERGENCE AND FINITE ELEMENT METHODS FOR EIGENVALUE PROBLEMS

被引:0
|
作者
Gong, Bo [1 ]
Sun, Jiguang [2 ]
机构
[1] Beijing Univ Technol, Fac Sci, Dept Math, Beijing 100124, Peoples R China
[2] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
关键词
regular convergence; finite element methods; eigenvalue problems; APPROXIMATION;
D O I
10.1553/etna_vol58s228
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Regular convergence, together with other types of convergence, have been studied since the 1970s for discrete approximations of linear operators. In this paper, we consider the eigenvalue approximation of a compact operator T that can be written as an eigenvalue problem of a holomorphic Fredholm operator function F(& eta;) = T- & eta; 1 I. Focusing on finite element methods (conforming, discontinuous Galerkin, non-conforming, etc.), we show that the regular convergence of the discrete holomorphic operator functions F,,, to F follows from the compact convergence of the discrete operators T,,, to T. The convergence of the eigenvalues is then obtained using abstract approximation theory for the eigenvalue problems of holomorphic Fredholm operator functions. The result can be used to prove the convergence of various finite element methods for eigenvalue problems such as the Dirichlet eigenvalue problem and the biharmonic eigenvalue problem.
引用
收藏
页码:228 / 243
页数:16
相关论文
共 50 条
  • [1] CONVERGENCE OF ADAPTIVE FINITE ELEMENT METHODS FOR EIGENVALUE PROBLEMS
    Garau, Eduardo M.
    Morin, Pedro
    Zuppa, Carlos
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2009, 19 (05): : 721 - 747
  • [2] On finite element methods for coupling eigenvalue problems
    De Schepper, H
    Van Keer, R
    [J]. MATHEMATICS OF FINITE ELEMENTS AND APPLICATIONS X, 2000, : 355 - 365
  • [3] Finite element methods for variational eigenvalue problems
    Kanschat, Guido
    [J]. GEOMETRIC AND COMPUTATIONAL SPECTRAL THEORY, 2017, 700 : 155 - 176
  • [4] GENERALIZED FINITE ELEMENT METHODS FOR QUADRATIC EIGENVALUE PROBLEMS
    Malqvist, Axel
    Peterseim, Daniel
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (01): : 147 - 163
  • [5] EIGENVALUE CONVERGENCE IN THE FINITE-ELEMENT METHOD
    BENNIGHOF, JK
    MEIROVITCH, L
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1986, 23 (11) : 2153 - 2165
  • [6] Convergence of methods for nonlinear eigenvalue problems
    Back, P
    Ringertz, U
    [J]. AIAA JOURNAL, 1997, 35 (06) : 1084 - 1087
  • [7] CONVERGENCE OF CONFORMING FINITE-ELEMENT METHODS FOR SHELL PROBLEMS
    CIARLET, PG
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 280 (19): : 1299 - 1301
  • [8] Finite element methods and their convergence for elliptic and parabolic interface problems
    Zhiming Chen
    Jun Zou
    [J]. Numerische Mathematik, 1998, 79 : 175 - 202
  • [9] Convergence analysis of finite element methods for singularly perturbed problems
    Li, JC
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 40 (6-7) : 735 - 745
  • [10] Finite element methods and their convergence for elliptic and parabolic interface problems
    Chen, ZM
    Zou, J
    [J]. NUMERISCHE MATHEMATIK, 1998, 79 (02) : 175 - 202