CONVERGENCE OF ADAPTIVE FINITE ELEMENT METHODS FOR EIGENVALUE PROBLEMS

被引:45
|
作者
Garau, Eduardo M. [1 ]
Morin, Pedro
Zuppa, Carlos [2 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
[2] Univ Nacl San Luis, Fac Ciencias Fis Matemat & Nat, Dept Matemat, RA-5700 San Luis, Argentina
来源
关键词
Eigenvalue problems; adaptivity; finite elements; convergence; ELLIPTIC-EQUATIONS; A-POSTERIORI; BOUNDARY-CONDITIONS; APPROXIMATION; COEFFICIENTS;
D O I
10.1142/S0218202509003590
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove convergence of adaptive finite element methods for second-order elliptic eigenvalue problems. We consider Lagrange finite elements of any degree and prove convergence for simple as well as multiple eigenvalues under a minimal refinement of marked elements, for all reasonable marking strategies, and starting from any initial triangulation.
引用
收藏
页码:721 / 747
页数:27
相关论文
共 50 条
  • [1] REGULAR CONVERGENCE AND FINITE ELEMENT METHODS FOR EIGENVALUE PROBLEMS
    Gong, Bo
    Sun, Jiguang
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2023, 58 : 228 - 243
  • [2] CONVERGENCE AND OPTIMALITY OF HIGHER-ORDER ADAPTIVE FINITE ELEMENT METHODS FOR EIGENVALUE CLUSTERS
    Bonito, Andrea
    Demlow, Alan
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (04) : 2379 - 2388
  • [3] On finite element methods for coupling eigenvalue problems
    De Schepper, H
    Van Keer, R
    [J]. MATHEMATICS OF FINITE ELEMENTS AND APPLICATIONS X, 2000, : 355 - 365
  • [4] Finite element methods for variational eigenvalue problems
    Kanschat, Guido
    [J]. GEOMETRIC AND COMPUTATIONAL SPECTRAL THEORY, 2017, 700 : 155 - 176
  • [5] Convergence and optimal complexity of adaptive finite element eigenvalue computations
    Dai, Xiaoying
    Xu, Jinchao
    Zhou, Aihui
    [J]. NUMERISCHE MATHEMATIK, 2008, 110 (03) : 313 - 355
  • [6] Convergence and optimal complexity of adaptive finite element eigenvalue computations
    Xiaoying Dai
    Jinchao Xu
    Aihui Zhou
    [J]. Numerische Mathematik, 2008, 110 : 313 - 355
  • [7] Adaptive finite element methods for the Laplace eigenvalue problem
    Hoppe, R. H. W.
    Wu, H.
    Zhang, Z.
    [J]. JOURNAL OF NUMERICAL MATHEMATICS, 2010, 18 (04) : 281 - 302
  • [8] Adaptive Finite Element Methods with convergence rates
    Peter Binev
    Wolfgang Dahmen
    Ron DeVore
    [J]. Numerische Mathematik, 2004, 97 : 219 - 268
  • [9] Adaptive finite element methods with convergence rates
    Binev, P
    Dahmen, W
    DeVore, R
    [J]. NUMERISCHE MATHEMATIK, 2004, 97 (02) : 219 - 268
  • [10] Convergence of goal-oriented adaptive finite element methods for nonsymmetric problems
    Holst, Michael
    Pollock, Sara
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (02) : 479 - 509