On finite element methods for coupling eigenvalue problems

被引:0
|
作者
De Schepper, H [1 ]
Van Keer, R [1 ]
机构
[1] Univ Ghent, Fac Engn, Dept Math Anal, B-9000 Ghent, Belgium
关键词
eigenvalue problems; nonlocal transition conditions; imperfect interpolation;
D O I
10.1016/B978-008043568-8/50023-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider second-order elliptic eigenvalue problems on a composite structure, consisting of polygonal domains in the plane, where the interaction between the domains is expressed through nonlocal coupling conditions of Dirichlet type. We study the finite element approximation without and with numerical quadrature, by adapting the operator method, outlined in [9]. In view of the error analysis, a crucial point is the definition and error estimation of a suitably modified vector Lagrange interpolant on the mesh. Compared to the results in [9], the same order of convergence in terms of the mesh parameter is achieved, however under a higher regularity assumption for the exact eigenfunctions.
引用
收藏
页码:355 / 365
页数:11
相关论文
共 50 条
  • [1] Finite element methods for variational eigenvalue problems
    Kanschat, Guido
    [J]. GEOMETRIC AND COMPUTATIONAL SPECTRAL THEORY, 2017, 700 : 155 - 176
  • [2] GENERALIZED FINITE ELEMENT METHODS FOR QUADRATIC EIGENVALUE PROBLEMS
    Malqvist, Axel
    Peterseim, Daniel
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (01): : 147 - 163
  • [3] REGULAR CONVERGENCE AND FINITE ELEMENT METHODS FOR EIGENVALUE PROBLEMS
    Gong, Bo
    Sun, Jiguang
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2023, 58 : 228 - 243
  • [4] CONVERGENCE OF ADAPTIVE FINITE ELEMENT METHODS FOR EIGENVALUE PROBLEMS
    Garau, Eduardo M.
    Morin, Pedro
    Zuppa, Carlos
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2009, 19 (05): : 721 - 747
  • [5] ON THE COUPLING OF BOUNDARY INTEGRAL AND FINITE ELEMENT METHODS FOR SIGNORINI PROBLEMS
    Wei-jun Tang
    Hong-yuan Fu
    Long-jun Shen(Laboratory of Computational Physics
    [J]. Journal of Computational Mathematics, 1998, (06) : 561 - 570
  • [6] On the coupling of boundary integral and finite element methods for Signorini problems
    Tang, WJ
    Fu, HY
    Shen, LJ
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 1998, 16 (06) : 561 - 570
  • [7] RECENT RESULTS ON LOWER BOUNDS OF EIGENVALUE PROBLEMS BY NONCONFORMING FINITE ELEMENT METHODS
    Lin, Qun
    Xie, Hehu
    [J]. INVERSE PROBLEMS AND IMAGING, 2013, 7 (03) : 795 - 811
  • [9] NONCONFORMING FINITE-ELEMENT METHODS FOR EIGENVALUE PROBLEMS IN LINEAR PLATE THEORY
    RANNACHER, R
    [J]. NUMERISCHE MATHEMATIK, 1979, 33 (01) : 23 - 42
  • [10] Finite Volume Methods for Eigenvalue Problems
    Shengde Liang
    Xiuling Ma
    Aihui Zhou
    [J]. BIT Numerical Mathematics, 2001, 41 : 345 - 363