Automated analysis of protein NMR assignments using methods from artificial intelligence

被引:234
|
作者
Zimmerman, DE
Kulikowski, CA
Huang, YP
Feng, WQ
Tashiro, M
Shimotakahara, S
Chien, CY
Powers, R
Montelione, GT
机构
[1] RUTGERS STATE UNIV,CTR ADV BIOTECHNOL & MED,PISCATAWAY,NJ 08854
[2] RUTGERS STATE UNIV,DEPT BIOCHEM & MOL BIOL,PISCATAWAY,NJ 08854
[3] RUTGERS STATE UNIV,DEPT COMP SCI,PISCATAWAY,NJ 08854
[4] WYETH AYERST RES,DEPT BIOL STRUCT,PEARL RIVER,NY 10965
关键词
constraint satisfaction; expert system; heteronuclear triple-resonance experiments; isotope experiments; knowledge-based data structure;
D O I
10.1006/jmbi.1997.1052
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An expert system for determining resonance assignments from NMR spectra of proteins is described. Given the amino acid sequence, a two-dimensional N-15-H-1 heteronuclear correlation spectrum and seven to eight three-dimensional triple-resonance NMR spectra for seven proteins, AUTOASSIGN obtained an average of 98% of sequence-specific spin-system assignments with an error rate of less than 0.5%. Execution times on a Sparc 10 workstation varied from 16 seconds for smaller proteins with simple spectra to one to nine minutes for medium size proteins exhibiting numerous extra spin systems attributed to conformational isomerization. AUTOASSIGN combines symbolic constraint satisfaction methods with a domain-specific knowledge base to exploit the logical structure of the sequential assignment problem, the specific features of the various NMR experiments, and the expected chemical shift frequencies of different amino acids. The current implementation specializes in the analysis of data derived from the most sensitive of the currently available triple-resonance experiments. Potential extensions of the system for analysis of additional types of protein NMR data are also discussed. (C) 1997 Academic Press Limited.
引用
收藏
页码:592 / 610
页数:19
相关论文
共 50 条
  • [21] Automated Visual Information Processing Using Artificial Intelligence
    Gavrilov, D. A.
    Lovtsov, D. A.
    SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING, 2021, 48 (06) : 436 - 445
  • [22] Automated Identification of Dental Implants Using Artificial Intelligence
    da Mata Santos, Rafael Pereira
    Vieira Oliveira Prado, Higor Eduardo
    Aranha Neto, Idalisio Soares
    Alves de Oliveira, Guilherme Augusto
    Vespasiano Silva, Amaro Ilidio
    Zenobio, Elton Goncalves
    Manzi, Flavio Ricardo
    INTERNATIONAL JOURNAL OF ORAL & MAXILLOFACIAL IMPLANTS, 2021, 36 (05) : 918 - 923
  • [23] Automated Visual Information Processing Using Artificial Intelligence
    D. A. Gavrilov
    D. A. Lovtsov
    Scientific and Technical Information Processing, 2021, 48 : 436 - 445
  • [24] Automated histopathological evaluation of pterygium using artificial intelligence
    Kim, Jong Hoon
    Kim, Young Jae
    Lee, Yeon Jeong
    Hyon, Joon Young
    Han, Sang Beom
    Kim, Kwang Gi
    BRITISH JOURNAL OF OPHTHALMOLOGY, 2023, 107 (05) : 627 - 634
  • [25] Automated quantification of penile curvature using artificial intelligence
    Abbas, Tariq O.
    AbdelMoniem, Mohamed
    Chowdhury, Muhammad E. H.
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 5
  • [26] Automated Interpretation of Clinical Electroencephalograms Using Artificial Intelligence
    Tveit, Jesper
    Aurlien, Harald
    Plis, Sergey
    Calhoun, Vince D.
    Tatum, William O.
    Schomer, Donald L.
    Arntsen, Vibeke
    Cox, Fieke
    Fahoum, Firas
    Gallentine, William B.
    Gardella, Elena
    Hahn, Cecil D.
    Husain, Aatif M.
    Kessler, Sudha
    Kural, Mustafa Aykut
    Nascimento, Fabio A.
    Tankisi, Hatice
    Ulvin, Line B.
    Wennberg, Richard
    Beniczky, Sandor
    JAMA NEUROLOGY, 2023, 80 (08) : 805 - 812
  • [27] Artificial Intelligence in Automated Detection of Disinformation: A Thematic Analysis
    Santos, Fatima C. Carrilho
    JOURNALISM AND MEDIA, 2023, 4 (02): : 679 - 687
  • [28] Automated Discourse Analysis via Generative Artificial Intelligence
    Garg, Ryan
    Han, Jaeyoung
    Cheng, Yixin
    Fang, Zheng
    Swiecki, Zachari
    FOURTEENTH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE, LAK 2024, 2024, : 814 - 820
  • [29] On the Methods of Artificial Intelligence for Analysis of Oncological Data
    D. K. Chebanov
    I. N. Mikhaylova
    Automatic Documentation and Mathematical Linguistics, 2020, 54 : 255 - 259
  • [30] On the Methods of Artificial Intelligence for Analysis of Oncological Data
    Chebanov, D. K.
    Mikhaylova, I. N.
    AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS, 2020, 54 (05) : 255 - 259