On the Methods of Artificial Intelligence for Analysis of Oncological Data

被引:0
|
作者
D. K. Chebanov
I. N. Mikhaylova
机构
[1] LLC OncoUnite Clinics,
[2] Blokhin National Medical Research Center of Oncology,undefined
[3] Ministry of Health of the Russian Federation,undefined
关键词
artificial intelligence; intelligent system; oncology; genetic data; mutations; immune data; JSM‑method of ASSR;
D O I
暂无
中图分类号
学科分类号
摘要
A brief overview of artificial intelligence techniques applied to medical data related to oncology is provided. The actual goals of using artificial intelligence are listed, that is, the types of applied problems solved with its use. The initial information is described, which, as a rule, contains genotypic data: about DNA and associated molecules, as well as the general clinical parameters of patients. The description of the logical-mathematical and software approaches of the most known solutions in this area is given. This work is intended to familiarize data analysts with the challenges in modern oncology with the use of artificial intelligence, as well as to guide biomedical researchers on the variety of data-mining methods and capabilities.
引用
收藏
页码:255 / 259
页数:4
相关论文
共 50 条
  • [1] On the Methods of Artificial Intelligence for Analysis of Oncological Data
    Chebanov, D. K.
    Mikhaylova, I. N.
    [J]. AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS, 2020, 54 (05) : 255 - 259
  • [2] Editorial: Innovative applications with artificial intelligence methods in neuroimaging data analysis
    Liu, Feng
    Zhao, Li
    Lu, Yuan-Chiao
    Wu, Yao
    [J]. FRONTIERS IN HUMAN NEUROSCIENCE, 2022, 16
  • [3] Artificial Intelligence in Oncological Hybrid Imaging
    Feuerecker, Benedikt
    Heimer, Maurice M.
    Geyer, Thomas
    Fabritius, Matthias P.
    Gu, Sijing
    Schachtner, Balthasar
    Beyer, Leonie
    Ricke, Jens
    Gatidis, Sergios
    Ingrisch, Michael
    Cyran, Clemens C.
    [J]. ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2023, 195 (02): : 105 - 114
  • [4] Artificial intelligence in musculoskeletal oncological radiology
    Vogrin, Matjaz
    Trojner, Teodor
    Kelc, Robi
    [J]. RADIOLOGY AND ONCOLOGY, 2021, 55 (01) : 1 - 6
  • [5] Artificial Intelligence in Oncological Hybrid Imaging
    Feuerecker, Benedikt
    Heimer, Maurice M.
    Geyer, Thomas
    Fabritius, Matthias P.
    Gu, Sijing
    Schachtner, Balthasar
    Beyer, Leonie
    Ricke, Jens
    Gatidis, Sergios
    Ingrisch, Michael
    Cyran, Clemens C.
    [J]. NUKLEARMEDIZIN-NUCLEAR MEDICINE, 2023, 62 (05): : 296 - 305
  • [6] Artificial intelligence methods in data protection techniques
    Drabarek, Jozef
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (10): : 133 - 135
  • [7] Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization
    Papadimitroulas, Panagiotis
    Brocki, Lennart
    Chung, Neo Christopher
    Marchadour, Wistan
    Vermet, Franck
    Gaubert, Laurent
    Eleftheriadis, Vasilis
    Plachouris, Dimitris
    Visvikis, Dimitris
    Kagadis, George C.
    Hatt, Mathieu
    [J]. PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 83 : 108 - 121
  • [8] Artificial intelligence in the analysis of glycosylation data
    Li, Haining
    Chiang, Austin W. T.
    Lewis, Nathan E.
    [J]. BIOTECHNOLOGY ADVANCES, 2022, 60
  • [9] ARTIFICIAL INTELLIGENCE METHODS IN ELECTROCARDIOGRAM AND ELECTROENCEPHALOGRAM DATA CLUSTERING
    Bursa, Miroslav
    Lhotska, Lenka
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2009, 8 (01) : 69 - 84
  • [10] Artificial intelligence in oncological radiology A (p)review
    Bucher, Andreas M.
    Kleesiek, Jens
    [J]. RADIOLOGE, 2021, 61 (01): : 52 - 59