ARTIFICIAL INTELLIGENCE METHODS IN ELECTROCARDIOGRAM AND ELECTROENCEPHALOGRAM DATA CLUSTERING

被引:0
|
作者
Bursa, Miroslav [1 ]
Lhotska, Lenka [1 ]
机构
[1] Czech Tech Univ, Dept Cybernet, Tech 2, CR-16627 Prague, Czech Republic
关键词
Ant-colony optimization; ant-colony clustering; electrocardiogram; clustering; artificial intelligence; electroencephalogram; data processing;
D O I
10.1142/S1469026809002448
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper focuses on the field of artificial intelligence techniques and their use in biomedical data processing. It concerns the clustering techniques inspired by various ant colonies. The behavior of ant colonies shows many interesting properties that have been used in static and dynamic combinatorial problem-solving tasks (mostly since 1990). Also applications to data clustering have been proposed. This branch is a subject of ongoing research. After the introduction into the state-of-the-art of ant-colony-inspired metaheuristics, an overview of ant-colony-inspired clustering metaheuristics is presented, together with the ACO(=)DTree method, developed by the first author, which is based on the autocatalytic collective behavior of real insect colonies. Over the basic algorithm it involves techniques to increase robustness and performance of the method. Application to electrocardiogram and electroencephalogram data processing is also presented, together with comparison to other clustering methods.
引用
收藏
页码:69 / 84
页数:16
相关论文
共 50 条
  • [1] Ant Colony Cooperative Strategy in Electrocardiogram and Electroencephalogram Data Clustering
    Bursa, Miroslav
    Lhotska, Lenka
    [J]. NATURE INSPIRED COOPERATIVE STRATEGIES FOR OPTIMIZATION (NICSO 2007), 2008, 129 : 323 - 333
  • [2] ARTIFICIAL-INTELLIGENCE METHODS IN QUANTITATIVE ELECTROENCEPHALOGRAM ANALYSIS
    JAGANNATHAN, V
    BOURNE, JR
    JANSEN, BH
    WARD, JW
    [J]. COMPUTER PROGRAMS IN BIOMEDICINE, 1982, 15 (03): : 249 - 257
  • [3] Artificial intelligence for the electrocardiogram
    Ana Mincholé
    Blanca Rodriguez
    [J]. Nature Medicine, 2019, 25 : 22 - 23
  • [4] Artificial intelligence for the electrocardiogram
    Minchole, Ana
    Rodriguez, Blanca
    [J]. NATURE MEDICINE, 2019, 25 (01) : 22 - 23
  • [5] Application of artificial intelligence to the electrocardiogram
    Attia, Zachi, I
    Harmon, David M.
    Behr, Elijah R.
    Friedman, Paul A.
    [J]. EUROPEAN HEART JOURNAL, 2021, 42 (46) : 4717 - +
  • [6] Predicting mortality in cardiovascular patients using electrocardiogram data and artificial intelligence
    Wegener, S.
    Gruen, D.
    Prim, J.
    Gumpfer, N.
    Wolter, J. S.
    Hamm, C. W.
    Liebetrau, C.
    Hannig, J.
    Guckert, M.
    Keller, T.
    [J]. EUROPEAN HEART JOURNAL, 2021, 42 : 1132 - 1132
  • [7] Artificial intelligence in wearable electrocardiogram monitoring
    Wang X.
    Li Q.
    Ma C.
    Zhang S.
    Lin Y.
    Li J.
    Liu C.
    [J]. Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2023, 40 (06): : 1084 - 1092
  • [8] Artificial intelligence methods in data protection techniques
    Drabarek, Jozef
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (10): : 133 - 135
  • [9] On the Methods of Artificial Intelligence for Analysis of Oncological Data
    D. K. Chebanov
    I. N. Mikhaylova
    [J]. Automatic Documentation and Mathematical Linguistics, 2020, 54 : 255 - 259
  • [10] On the Methods of Artificial Intelligence for Analysis of Oncological Data
    Chebanov, D. K.
    Mikhaylova, I. N.
    [J]. AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS, 2020, 54 (05) : 255 - 259