Application of artificial intelligence to the electrocardiogram

被引:134
|
作者
Attia, Zachi, I [1 ]
Harmon, David M. [2 ]
Behr, Elijah R. [3 ,4 ,5 ,6 ]
Friedman, Paul A. [1 ]
机构
[1] Mayo Clin, Dept Cardiovasc Med, 200 First St SW, Rochester, MN 55905 USA
[2] Mayo Clin, Dept Internal Med, Sch Grad Med Educ, 200 First St SW, Rochester, MN 55905 USA
[3] St Georges Univ London, Mol & Clin Sci Inst, Cardiol Res Ctr, Blackshaw Rd, London SW17 0QT, England
[4] St Georges Univ London, Mol & Clin Sci Inst, Cardiovasc Clin Acad Grp, Blackshaw Rd, London SW17 0QT, England
[5] St Georges Univ Hosp NHS Fdn Trust, Blackshaw Rd, London SW17 0QT, England
[6] Mayo Clin Healthcare, 15 Portland Pl, London W1B 1PT, England
关键词
Artificial intelligence; Machine learning; Electrocardiograms; Digital health; HYPERTROPHIC CARDIOMYOPATHY; ATRIAL-FIBRILLATION; EJECTION FRACTION; DYSFUNCTION; ECG; ALGORITHM; CRITERIA; STROKE;
D O I
10.1093/eurheartj/ehab649
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Artificial intelligence (AI) has given the electrocardiogram (ECG) and clinicians reading them super-human diagnostic abilities. Trained without hard-coded rules by finding often subclinical patterns in huge datasets, AI transforms the ECG, a ubiquitous, non-invasive cardiac test that is integrated into practice workflows, into a screening toot and predictor of cardiac and non-cardiac diseases, often in asymptomatic individuals. This review describes the mathematical background behind supervised AI algorithms, and discusses selected AI ECG cardiac screening algorithms including those for the detection of left ventricular dysfunction, episodic atrial fibrillation from a tracing recorded during normal sinus rhythm, and other structural and valvular diseases. The ability to learn from big data sets, without the need to understand the biological mechanism, has created opportunities for detecting non-cardiac diseases as COVID-19 and introduced challenges with regards to data privacy. Like all medical tests, the AI ECG must be carefully vetted and validated in real-world clinical environments. Finally, with mobile form factors that allow acquisition of medical-grade ECGs from smartphones and wearables, the use of AI may enable massive scalability to democratize healthcare. [GRAPHICS] .
引用
收藏
页码:4717 / +
页数:15
相关论文
共 50 条
  • [1] Artificial intelligence for the electrocardiogram
    Ana Mincholé
    Blanca Rodriguez
    Nature Medicine, 2019, 25 : 22 - 23
  • [2] Artificial intelligence for the electrocardiogram
    Minchole, Ana
    Rodriguez, Blanca
    NATURE MEDICINE, 2019, 25 (01) : 22 - 23
  • [3] Artificial intelligence in wearable electrocardiogram monitoring
    Wang X.
    Li Q.
    Ma C.
    Zhang S.
    Lin Y.
    Li J.
    Liu C.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2023, 40 (06): : 1084 - 1092
  • [4] NOVEL SMARTPHONE APPLICATION FOR OBTAINING ARTIFICIAL INTELLIGENCE DERIVED DIAGNOSIS FROM PHOTOS OF ELECTROCARDIOGRAM
    Wong, Chun Ka
    Lau, Yuk Ming
    Lui, Hin Wai
    Chan, Arthur
    San, Wing Chun
    Huang, Duo
    Zhou, Mi
    Siu, Chung Wah
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2023, 81 (08) : 2357 - 2357
  • [5] Artificial intelligence for hemodynamic monitoring with a wearable electrocardiogram monitor
    Schlesinger, Daphne E.
    Alam, Ridwan
    Ringel, Roey
    Pomerantsev, Eugene
    Devireddy, Srikanth
    Shah, Pinak
    Garasic, Joseph
    Stultz, Collin M.
    COMMUNICATIONS MEDICINE, 2025, 5 (01):
  • [6] A review of arrhythmia detection based on electrocardiogram with artificial intelligence
    Liu, Jinlei
    Li, Zhiyuan
    Jin, Yanrui
    Liu, Yunqing
    Liu, Chengliang
    Zhao, Liqun
    Chen, Xiaojun
    EXPERT REVIEW OF MEDICAL DEVICES, 2022, 19 (07) : 549 - 560
  • [7] ARTIFICIAL INTELLIGENCE METHODS IN ELECTROCARDIOGRAM AND ELECTROENCEPHALOGRAM DATA CLUSTERING
    Bursa, Miroslav
    Lhotska, Lenka
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2009, 8 (01) : 69 - 84
  • [8] Abnormalities analysis of electrocardiogram signals by using artificial intelligence
    Sanjib Kumar Dhara
    Nilankar Bhanja
    Prabodh Khampariya
    Multimedia Tools and Applications, 2025, 84 (13) : 11319 - 11342
  • [9] Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram
    Attia, Zachi I.
    Kapa, Suraj
    Dugan, Jennifer
    Pereira, Naveen
    Noseworthy, Peter A.
    Jimenez, Francisco Lopez
    Cruz, Jessica
    Carter, Rickey E.
    DeSimone, Daniel C.
    Signorino, John
    Halamka, John
    Gari, Nikhita R. Chennaiah
    Madathala, Raja Sekhar
    Platonov, Pyotr G.
    Gul, Fahad
    Janssens, Stefan P.
    Narayan, Sanjiv
    Upadhyay, Gaurav A.
    Alenghat, Francis J.
    Lahiri, Marc K.
    Dujardin, Karl
    Hermel, Melody
    Dominic, Paari
    Turk-Adawi, Karam
    Asaad, Nidal
    Svensson, Anneli
    Fernandez-Aviles, Francisco
    Esakof, Darryl D.
    Bartunek, Jozef
    Noheria, Amit
    Sridhar, Arun R.
    Lanza, Gaetano A.
    Cohoon, Kevin
    Padmanabhan, Deepak
    Gutierrez, Jose Alberto Pardo
    Sinagra, Gianfranco
    Merlo, Marco
    Zagari, Domenico
    Escenaro, Brenda D. Rodriguez
    Pahlajani, Dev B.
    Loncar, Goran
    Vukomanovic, Vladan
    Jensen, Henrik K.
    Farkouh, Michael E.
    Luescher, Thomas F.
    Ping, Carolyn Lam Su
    Peters, Nicholas S.
    Friedman, Paul A.
    MAYO CLINIC PROCEEDINGS, 2021, 96 (08) : 2081 - 2094
  • [10] DETECTION OF HYPERTROPHIC CARDIOMYOPATHY ON ELECTROCARDIOGRAM USING ARTIFICIAL INTELLIGENCE
    Hillis, James
    Bizzo, Bernardo Canedo
    Mercaldo, Sarah
    Ghatak, Ankita
    Macdonald, Ashley
    Halle, Madeleine
    Schultz, Alexander
    L'Italien, Eric
    Tam, Victor
    Awad, Amine
    Bargiela, David
    Dagen, Sarajune
    Moura, Filipe
    Toland, Danielle
    Blood, Alexander
    Gross, David
    Jering, Karola
    Lopes, Mathew
    Marston, Nicholas
    Nauffal, Victor
    Dreyer, Keith
    Scirica, Benjamin M.
    Ho, Carolyn
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 83 (13) : 2609 - 2609