Automated quantification of penile curvature using artificial intelligence

被引:11
|
作者
Abbas, Tariq O. [1 ,2 ,3 ]
AbdelMoniem, Mohamed [3 ]
Chowdhury, Muhammad E. H. [4 ]
机构
[1] Weill Cornell Med Qatar, Ar Rayyan, Qatar
[2] Sidra Med, Surg Dept, Urol Div, Doha, Qatar
[3] Qatar Univ, Coll Med, Doha, Qatar
[4] Qatar Univ, Dept Elect Engn, Doha, Qatar
来源
关键词
penile curvature; artificial intelligence; machine learning; hypospadias; chordee; HYPOSPADIAS; RELIABILITY; MEN;
D O I
10.3389/frai.2022.954497
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
ObjectiveTo develop and validate an artificial intelligence (AI)-based algorithm for capturing automated measurements of Penile curvature (PC) based on 2-dimensional images. Materials and methodsNine 3D-printed penile models with differing curvature angles (ranging from 18 to 88 degrees) were used to compile a 900-image dataset featuring multiple camera positions, inclination angles, and background/lighting conditions. The proposed framework of PC angle estimation consisted of three stages: automatic penile area localization, shaft segmentation, and curvature angle estimation. The penile model images were captured using a smartphone camera and used to train and test a Yolov5 model that automatically cropped the penile area from each image. Next, an Unet-based segmentation model was trained, validated, and tested to segment the penile shaft, before a custom Hough-Transform-based angle estimation technique was used to evaluate degree of PC. ResultsThe proposed framework displayed robust performance in cropping the penile area [mean average precision (mAP) 99.4%] and segmenting the shaft [Dice Similarity Coefficient (DSC) 98.4%]. Curvature angle estimation technique generally demonstrated excellent performance, with a mean absolute error (MAE) of just 8.5 when compared with ground truth curvature angles. ConclusionsConsidering current intra- and inter-surgeon variability of PC assessments, the framework reported here could significantly improve precision of PC measurements by surgeons and hypospadiology researchers.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Urologist validation of an artificial intelligence-based tool for automated estimation of penile curvature
    Abbas, Tariq O.
    Abdelmoniem, Mohamed
    Villanueva, Carlos
    Al Hamidi, Yasser
    Elkadhi, Abderrahman
    Alsalihi, Muthana
    Salle, J. L. Pippi
    Abrar, Sakib
    Chowdhury, Muhammad
    JOURNAL OF PEDIATRIC UROLOGY, 2024, 20 (01) : 90.e1 - 90.e6
  • [2] The Emerging Role of Artificial Intelligence and Automated Platforms for the Assessment of Penile Curvature: A Scoping Review
    Lewis, Kieran
    Deangelo, Lydia
    Raheem, Omer
    Bole, Raevti
    CURRENT UROLOGY REPORTS, 2025, 26 (01)
  • [3] Automated measurement of penile curvature using deep learning-based novel quantification method
    Baray, Sriman Bidhan
    Abdelmoniem, Mohamed
    Mahmud, Sakib
    Kabir, Saidul
    Faisal, Md. Ahasan Atick
    Chowdhury, Muhammad E. H.
    Abbas, Tariq O.
    FRONTIERS IN PEDIATRICS, 2023, 11
  • [4] Automated identification and quantification of activated dendritic cells in central cornea using artificial intelligence
    Levine, Harry
    Tovar, Arianna
    Cohen, Adam K.
    Cabrera, Kimberly
    Locatelli, Elyana
    Galor, Anat
    Feuer, William
    Goldhagen, Brian E.
    OCULAR SURFACE, 2023, 29 : 480 - 485
  • [5] Automated artificial intelligence quantification of fibroglandular tissue on breast MRI.
    Takhtawala, Ruguaivah
    Negrete, Nataly Tapia
    Shaver, Madeleine
    Kart, Turkay
    Zhang, Yang
    Park, Vivian Youngjean
    Kim, Min Jung
    Su, Min-Ying
    Chow, Daniel S.
    Chang, Peter
    JOURNAL OF CLINICAL ONCOLOGY, 2019, 37 (15)
  • [6] PREOPERATIVE ASSESSMENT OF PENILE CURVATURE BY ARTIFICIAL ERECTION
    DITTRICH, A
    VANDENDRIS, M
    JOURNAL OF UROLOGY, 1990, 143 (06): : 1238 - 1238
  • [7] Automated Imaging of Cataract Surgery Using Artificial Intelligence
    Kim, Young Jae
    Hwang, Sung Ha
    Kim, Kwang Gi
    Nam, Dong Heun
    DIAGNOSTICS, 2025, 15 (04)
  • [8] Automated Visual Information Processing Using Artificial Intelligence
    Gavrilov, D. A.
    Lovtsov, D. A.
    SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING, 2021, 48 (06) : 436 - 445
  • [9] Automated histopathological evaluation of pterygium using artificial intelligence
    Kim, Jong Hoon
    Kim, Young Jae
    Lee, Yeon Jeong
    Hyon, Joon Young
    Han, Sang Beom
    Kim, Kwang Gi
    BRITISH JOURNAL OF OPHTHALMOLOGY, 2023, 107 (05) : 627 - 634
  • [10] Automated Identification of Dental Implants Using Artificial Intelligence
    da Mata Santos, Rafael Pereira
    Vieira Oliveira Prado, Higor Eduardo
    Aranha Neto, Idalisio Soares
    Alves de Oliveira, Guilherme Augusto
    Vespasiano Silva, Amaro Ilidio
    Zenobio, Elton Goncalves
    Manzi, Flavio Ricardo
    INTERNATIONAL JOURNAL OF ORAL & MAXILLOFACIAL IMPLANTS, 2021, 36 (05) : 918 - 923