Automated quantification of penile curvature using artificial intelligence

被引:11
|
作者
Abbas, Tariq O. [1 ,2 ,3 ]
AbdelMoniem, Mohamed [3 ]
Chowdhury, Muhammad E. H. [4 ]
机构
[1] Weill Cornell Med Qatar, Ar Rayyan, Qatar
[2] Sidra Med, Surg Dept, Urol Div, Doha, Qatar
[3] Qatar Univ, Coll Med, Doha, Qatar
[4] Qatar Univ, Dept Elect Engn, Doha, Qatar
来源
关键词
penile curvature; artificial intelligence; machine learning; hypospadias; chordee; HYPOSPADIAS; RELIABILITY; MEN;
D O I
10.3389/frai.2022.954497
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
ObjectiveTo develop and validate an artificial intelligence (AI)-based algorithm for capturing automated measurements of Penile curvature (PC) based on 2-dimensional images. Materials and methodsNine 3D-printed penile models with differing curvature angles (ranging from 18 to 88 degrees) were used to compile a 900-image dataset featuring multiple camera positions, inclination angles, and background/lighting conditions. The proposed framework of PC angle estimation consisted of three stages: automatic penile area localization, shaft segmentation, and curvature angle estimation. The penile model images were captured using a smartphone camera and used to train and test a Yolov5 model that automatically cropped the penile area from each image. Next, an Unet-based segmentation model was trained, validated, and tested to segment the penile shaft, before a custom Hough-Transform-based angle estimation technique was used to evaluate degree of PC. ResultsThe proposed framework displayed robust performance in cropping the penile area [mean average precision (mAP) 99.4%] and segmenting the shaft [Dice Similarity Coefficient (DSC) 98.4%]. Curvature angle estimation technique generally demonstrated excellent performance, with a mean absolute error (MAE) of just 8.5 when compared with ground truth curvature angles. ConclusionsConsidering current intra- and inter-surgeon variability of PC assessments, the framework reported here could significantly improve precision of PC measurements by surgeons and hypospadiology researchers.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Automated Data Harmonization (ADH) using Artificial Intelligence (AI)
    Anjan Dutta
    Tomal Deb
    Shrikant Pathak
    OPSEARCH, 2021, 58 : 257 - 275
  • [22] Automated left ventricular dimension assessment using artificial intelligence
    Stowell, C.
    Howard, J.
    Cole, G.
    Ananthan, K.
    Demetrescu, C.
    Pearce, K.
    Rajani, R.
    Sehmi, J.
    Vimalesvaran, K.
    Kanaganayagam, S.
    Ghosh, A.
    Chambers, J.
    Rana, B.
    Francis, D.
    Shun-Shin, M.
    EUROPEAN HEART JOURNAL, 2021, 42 : 1 - 1
  • [23] Automated identification of hip arthroplasty implants using artificial intelligence
    Zibo Gong
    Yonghui Fu
    Ming He
    Xinzhe Fu
    Scientific Reports, 12
  • [24] Automated Data Harmonization (ADH) using Artificial Intelligence (AI)
    Dutta, Anjan
    Deb, Tomal
    Pathak, Shrikant
    OPSEARCH, 2021, 58 (02) : 257 - 275
  • [25] Automated sperm morphology assessment using artificial intelligence technology
    Agarwal, A.
    Selvam, M. K. Panne
    HUMAN REPRODUCTION, 2021, 36 : 142 - 143
  • [27] Automated identification of hip arthroplasty implants using artificial intelligence
    Gong, Zibo
    Fu, Yonghui
    He, Ming
    Fu, Xinzhe
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [28] An automated waste management system using artificial intelligence and robotics
    Le Quang Thao
    Journal of Material Cycles and Waste Management, 2023, 25 : 3791 - 3800
  • [29] Personalized uncertainty quantification in artificial intelligence
    Tapabrata Chakraborti
    Christopher R. S. Banerji
    Ariane Marandon
    Vicky Hellon
    Robin Mitra
    Brieuc Lehmann
    Leandra Bräuninger
    Sarah McGough
    Cagatay Turkay
    Alejandro F. Frangi
    Ginestra Bianconi
    Weizi Li
    Owen Rackham
    Deepak Parashar
    Chris Harbron
    Ben MacArthur
    Nature Machine Intelligence, 2025, 7 (4) : 522 - 530
  • [30] Fully automated artificial intelligence-based cine cardiac magnetic resonance image quantification
    Kazaj, P. Mohammadi
    Baj, G.
    Schutze, J.
    Berto, M. Boscolo
    Stark, A.
    Valenzuela, W.
    Graeni, C.
    Shiri, I
    EUROPEAN HEART JOURNAL, 2024, 45