Automated quantification of penile curvature using artificial intelligence

被引:11
|
作者
Abbas, Tariq O. [1 ,2 ,3 ]
AbdelMoniem, Mohamed [3 ]
Chowdhury, Muhammad E. H. [4 ]
机构
[1] Weill Cornell Med Qatar, Ar Rayyan, Qatar
[2] Sidra Med, Surg Dept, Urol Div, Doha, Qatar
[3] Qatar Univ, Coll Med, Doha, Qatar
[4] Qatar Univ, Dept Elect Engn, Doha, Qatar
来源
关键词
penile curvature; artificial intelligence; machine learning; hypospadias; chordee; HYPOSPADIAS; RELIABILITY; MEN;
D O I
10.3389/frai.2022.954497
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
ObjectiveTo develop and validate an artificial intelligence (AI)-based algorithm for capturing automated measurements of Penile curvature (PC) based on 2-dimensional images. Materials and methodsNine 3D-printed penile models with differing curvature angles (ranging from 18 to 88 degrees) were used to compile a 900-image dataset featuring multiple camera positions, inclination angles, and background/lighting conditions. The proposed framework of PC angle estimation consisted of three stages: automatic penile area localization, shaft segmentation, and curvature angle estimation. The penile model images were captured using a smartphone camera and used to train and test a Yolov5 model that automatically cropped the penile area from each image. Next, an Unet-based segmentation model was trained, validated, and tested to segment the penile shaft, before a custom Hough-Transform-based angle estimation technique was used to evaluate degree of PC. ResultsThe proposed framework displayed robust performance in cropping the penile area [mean average precision (mAP) 99.4%] and segmenting the shaft [Dice Similarity Coefficient (DSC) 98.4%]. Curvature angle estimation technique generally demonstrated excellent performance, with a mean absolute error (MAE) of just 8.5 when compared with ground truth curvature angles. ConclusionsConsidering current intra- and inter-surgeon variability of PC assessments, the framework reported here could significantly improve precision of PC measurements by surgeons and hypospadiology researchers.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Exploring facial cues: automated deception detection using artificial intelligence
    Dinges L.
    Fiedler M.-A.
    Al-Hamadi A.
    Hempel T.
    Abdelrahman A.
    Weimann J.
    Bershadskyy D.
    Steiner J.
    Neural Computing and Applications, 2024, 36 (24) : 14857 - 14883
  • [42] Exploring Artificial Intelligence using Automated Writing Evaluation for Writing Skills
    Rahman, Nurul Ajleaa Abdul
    Zulkornain, Luqmanul Hakim
    Hamzah, Nurul Huda
    ENVIRONMENT-BEHAVIOUR PROCEEDINGS JOURNAL, 2022, 7 : 547 - 553
  • [43] Pilot Study on the automated Evaluation of Polysomnography using Artificial Intelligence (AI)
    Hoheisel, A.
    Mau, M.
    Strobel, W.
    Koehler, T.
    Jahn, K.
    Herrmann, M.
    Darie, A.
    Ambros, M.
    Wieber, M.
    Rupprechter, S.
    Tamm, M.
    Stolz, D.
    PNEUMOLOGIE, 2024, 78 : S94 - S95
  • [44] Quantitative and Automated analysis of Head and Neck Cancers Using Artificial Intelligence
    Taqi, Syed Ahmed
    Khurram, Syed Ali
    Toh, Eu-Wing
    JOURNAL OF PATHOLOGY, 2024, 264 : S13 - S13
  • [45] Automated software for counting and measuring Hyalella genus using artificial intelligence
    Ludy Pineda-Alarcón
    Maycol Zuluaga
    Santiago Ruíz
    David Fernandez Mc Cann
    Fabio Vélez
    Nestor Aguirre
    Yarin Puerta
    Julio Cañón
    Environmental Science and Pollution Research, 2023, 30 : 123603 - 123615
  • [46] Automated Pollen Detection Device (APDD) using Holographic Artificial Intelligence
    Enright, Sean
    Alligood, Zachary
    Zhao, Yixin
    Bielory, Leonard
    Belkoff, Stephen
    Artman, Beryl
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2025, 155 (02) : AB248 - AB248
  • [47] Automated software for counting and measuring Hyalella genus using artificial intelligence
    Pineda-Alarcon, Ludy
    Zuluaga, Maycol
    Ruiz, Santiago
    Mc Cann, David Fernandez
    Velez, Fabio
    Aguirre, Nestor
    Puerta, Yarin
    Canon, Julio
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (59) : 123603 - 123615
  • [48] An Automated View Classification Model for Pediatric Echocardiography Using Artificial Intelligence
    Gearhart, Addison
    Goto, Shinichi
    Deo, Rahul C.
    Powell, Andrew J.
    JOURNAL OF THE AMERICAN SOCIETY OF ECHOCARDIOGRAPHY, 2022, 35 (12) : 1238 - 1246
  • [49] Automated Human Vision Assessment using Computer Vision and Artificial Intelligence
    Van Eenwyk, Jonathan
    Agah, Arvin
    Cibis, Gerhard W.
    2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEM OF SYSTEMS ENGINEERING (SOSE), 2008, : 317 - +
  • [50] Automated myeloma cell selection using machine learning and artificial intelligence
    Louis, Sherif
    Knecht, Hans
    Mai, Sabine
    JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (16)