Automated quantification of penile curvature using artificial intelligence

被引:11
|
作者
Abbas, Tariq O. [1 ,2 ,3 ]
AbdelMoniem, Mohamed [3 ]
Chowdhury, Muhammad E. H. [4 ]
机构
[1] Weill Cornell Med Qatar, Ar Rayyan, Qatar
[2] Sidra Med, Surg Dept, Urol Div, Doha, Qatar
[3] Qatar Univ, Coll Med, Doha, Qatar
[4] Qatar Univ, Dept Elect Engn, Doha, Qatar
来源
关键词
penile curvature; artificial intelligence; machine learning; hypospadias; chordee; HYPOSPADIAS; RELIABILITY; MEN;
D O I
10.3389/frai.2022.954497
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
ObjectiveTo develop and validate an artificial intelligence (AI)-based algorithm for capturing automated measurements of Penile curvature (PC) based on 2-dimensional images. Materials and methodsNine 3D-printed penile models with differing curvature angles (ranging from 18 to 88 degrees) were used to compile a 900-image dataset featuring multiple camera positions, inclination angles, and background/lighting conditions. The proposed framework of PC angle estimation consisted of three stages: automatic penile area localization, shaft segmentation, and curvature angle estimation. The penile model images were captured using a smartphone camera and used to train and test a Yolov5 model that automatically cropped the penile area from each image. Next, an Unet-based segmentation model was trained, validated, and tested to segment the penile shaft, before a custom Hough-Transform-based angle estimation technique was used to evaluate degree of PC. ResultsThe proposed framework displayed robust performance in cropping the penile area [mean average precision (mAP) 99.4%] and segmenting the shaft [Dice Similarity Coefficient (DSC) 98.4%]. Curvature angle estimation technique generally demonstrated excellent performance, with a mean absolute error (MAE) of just 8.5 when compared with ground truth curvature angles. ConclusionsConsidering current intra- and inter-surgeon variability of PC assessments, the framework reported here could significantly improve precision of PC measurements by surgeons and hypospadiology researchers.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Validation of an Automated Artificial Intelligence Algorithm for the Quantification of Major OCT Parameters in Diabetic Macular Edema
    Midena, Edoardo
    Toto, Lisa
    Frizziero, Luisa
    Covello, Giuseppe
    Torresin, Tommaso
    Midena, Giulia
    Danieli, Luca
    Pilotto, Elisabetta
    Figus, Michele
    Mariotti, Cesare
    Lupidi, Marco
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (06)
  • [32] Fully automated artificial intelligence-based cine cardiac magnetic resonance image quantification
    Kazaj, P. Mohammadi
    Baj, G.
    Schutze, J.
    Berto, M. Boscolo
    Stark, A.
    Valenzuela, W.
    Graeni, C.
    Shiri, I
    EUROPEAN HEART JOURNAL, 2024, 45
  • [33] Using artificial intelligence to improve body iron quantification: A scoping review
    Nashwan, Abdulqadir J.
    Alkhawaldeh, Ibraheem M.
    Shaheen, Nour
    Albalkhi, Ibrahem
    Serag, Ibrahim
    Sarhan, Khalid
    Abujaber, Ahmad A.
    Abd-Alrazaq, Alaa
    Yassin, Mohamed A.
    BLOOD REVIEWS, 2023, 62
  • [34] Standard for the Quantification of a Sterilization Effect Using an Artificial Intelligence Disinfection Robot
    Hong, Heeju
    Shin, Wonkook
    Oh, Jieun
    Lee, Sunwoo
    Kim, Taeyoung
    Lee, Woosub
    Choi, Jongsuk
    Suh, Seungbeum
    Kim, Kanggeon
    SENSORS, 2021, 21 (23)
  • [35] Quantification of Donor Liver Steatosis Using an Unsupervised Artificial Intelligence Platform
    Narayan, Raja
    Abadilla, Natasha
    Yang, Linfeng
    Hsu, Chun Chuan
    Jensen, Christopher
    Chen, Simon B.
    Higgins, John P.
    Melcher, Marc L.
    JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS, 2019, 229 (04) : E151 - E151
  • [36] Quantification of river total phosphorus using integrative artificial intelligence models
    Kim, Sungwon
    Seo, Youngmin
    Malik, Anurag
    Kim, Seunghyun
    Heddam, Salim
    Yaseen, Zaher Mundher
    Kisi, Ozgur
    Singh, Vijay P.
    ECOLOGICAL INDICATORS, 2023, 153
  • [37] An Artificial Intelligence Platform for Automated Vehicles
    Herrtwich, Ralf G.
    2020 9TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2020, : 1 - 1
  • [38] Harnessing Artificial Intelligence for Automated Diagnosis
    Zachariadis, Christos B.
    Leligou, Helen C.
    INFORMATION, 2024, 15 (06)
  • [39] Artificial Intelligence & Cybersecurity: A Preliminary Study of Automated Pentesting with Offensive Artificial Intelligence
    Francois, Marin
    Arduin, Pierre-Emmanuel
    Merad, Myriam
    INFORMATION AND KNOWLEDGE SYSTEMS: DIGITAL TECHNOLOGIES, ARTIFICIAL INTELLIGENCE AND DECISION MAKING, ICIKS 2021, 2021, 425 : 131 - 138
  • [40] Automated operative reports for robotic radical prostatectomy using artificial intelligence
    Khanna, A.
    Antolin, A.
    Zohar, M.
    Bar, O.
    Ben-Ayoun, D.
    Frank, I
    Thompson, R. H.
    Krueger, A.
    Shah, P.
    Sharma, V
    Boorjian, S.
    Wolf, T.
    Asselmann, D.
    Tollefson, M.
    EUROPEAN UROLOGY, 2024, 85 : S937 - S938