Automated histopathological evaluation of pterygium using artificial intelligence

被引:5
|
作者
Kim, Jong Hoon [1 ]
Kim, Young Jae [1 ]
Lee, Yeon Jeong [2 ,3 ]
Hyon, Joon Young [3 ,4 ]
Han, Sang Beom [2 ]
Kim, Kwang Gi [1 ]
机构
[1] Gachon Univ Med & Sci, Dept Biomed Engn, Incheon, South Korea
[2] Kangwon Natl Univ, Kangwon Natl Univ Hosp, Sch Med, Dept Ophthalmol, Chunchon, Gangwon, South Korea
[3] Seoul Natl Univ, Bundang Hosp, Dept Ophthalmol, Seongnam, South Korea
[4] Seoul Natl Univ, Coll Med, Dept Ophthalmol, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
cornea; conjunctiva; ENDOTHELIAL GROWTH-FACTOR; RECURRENT PTERYGIUM; BEVACIZUMAB; SURGERY; ANGIOGENESIS; EXPRESSION; EFFICACY; SAFETY;
D O I
10.1136/bjophthalmol-2021-320141
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose This study aimed to evaluate the efficacy of a new automated method for the evaluation of histopathological images of pterygium using artificial intelligence. Methods An in-house software for automated grading of histopathological images was developed. Histopathological images of pterygium (400 images from 40 patients) were analysed using our newly developed software. Manual grading (I-IV), labelled based on an established scoring system, served as the ground truth for training the four-grade classification models. Region of interest segmentation was performed before the classification of grades, which was achieved by the combination of expectation-maximisation and k-nearest neighbours. Fifty-five radiomic features extracted from each image were analysed with feature selection methods to examine the significant features. Five classifiers were evaluated for their ability to predict quantitative grading. Results Among the classifier models applied for automated grading in this study, the bagging tree showed the best performance, with a 75.9% true positive rate (TPR) and 75.8% positive predictive value (PPV) in internal validation. In external validation, the method also demonstrated reproducibility, with an 81.3% TPR and 82.0% PPV for the average of four classification grades. Conclusions Our newly developed automated method for quantitative grading of histopathological images of pterygium may be a reliable method for quantitative analysis of histopathological evaluation of pterygium.
引用
收藏
页码:627 / 634
页数:8
相关论文
共 50 条
  • [1] Pilot Study on the automated Evaluation of Polysomnography using Artificial Intelligence (AI)
    Hoheisel, A.
    Mau, M.
    Strobel, W.
    Koehler, T.
    Jahn, K.
    Herrmann, M.
    Darie, A.
    Ambros, M.
    Wieber, M.
    Rupprechter, S.
    Tamm, M.
    Stolz, D.
    [J]. PNEUMOLOGIE, 2024, 78 : S94 - S95
  • [2] Exploring Artificial Intelligence using Automated Writing Evaluation for Writing Skills
    Rahman, Nurul Ajleaa Abdul
    Zulkornain, Luqmanul Hakim
    Hamzah, Nurul Huda
    [J]. ENVIRONMENT-BEHAVIOUR PROCEEDINGS JOURNAL, 2022, 7 : 547 - 553
  • [3] Exploring Artificial Intelligence using Automated Writing Evaluation for Writing Skills
    Rahman, Nurul Ajleaa Abdul
    Zulkornain, Luqmanul Hakim
    Hamzah, Nurul Huda
    [J]. ENVIRONMENT-BEHAVIOUR PROCEEDINGS JOURNAL, 2022, 7 : 547 - 553
  • [4] A robust artificial intelligence approach for histopathological evaluation of prostate biopsies
    Mulliqi, N.
    Kartasalo, K.
    Ji, X.
    Szolnoky, K.
    Olsson, H.
    Blilie, A.
    Braun, M.
    Gambacorta, M.
    Hotakainen, K.
    Janssen, E. A. M.
    Kjosavik, S. R.
    Lowicki, R.
    Pedersen, B. G.
    Sorensen, K. D.
    Ulhoi, B. P.
    Ruusuvuori, P.
    Egevad, L.
    Eklund, M.
    [J]. EUROPEAN UROLOGY, 2022, 81 : S915 - S916
  • [5] Automated Prognostic Assessment of Endometrial Hyperplasia for Progression Risk Evaluation Using Artificial Intelligence
    Rewcastle, Emma
    Gudlaugsson, Einar
    Lillesand, Melinda
    Skaland, Ivar
    Baak, Jan P. A.
    Janssen, Emiel A. M.
    [J]. MODERN PATHOLOGY, 2023, 36 (05)
  • [6] Automated Evaluation and Rating of Product Repairability Using Artificial Intelligence-Based Approaches
    Liao, Hao-Yu
    Esmaeilian, Behzad
    Behdad, Sara
    [J]. JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2024, 146 (02):
  • [7] Automated Visual Information Processing Using Artificial Intelligence
    Gavrilov, D. A.
    Lovtsov, D. A.
    [J]. SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING, 2021, 48 (06) : 436 - 445
  • [8] Automated Identification of Dental Implants Using Artificial Intelligence
    da Mata Santos, Rafael Pereira
    Vieira Oliveira Prado, Higor Eduardo
    Aranha Neto, Idalisio Soares
    Alves de Oliveira, Guilherme Augusto
    Vespasiano Silva, Amaro Ilidio
    Zenobio, Elton Goncalves
    Manzi, Flavio Ricardo
    [J]. INTERNATIONAL JOURNAL OF ORAL & MAXILLOFACIAL IMPLANTS, 2021, 36 (05) : 918 - 923
  • [9] Automated Visual Information Processing Using Artificial Intelligence
    D. A. Gavrilov
    D. A. Lovtsov
    [J]. Scientific and Technical Information Processing, 2021, 48 : 436 - 445
  • [10] Automated quantification of penile curvature using artificial intelligence
    Abbas, Tariq O.
    AbdelMoniem, Mohamed
    Chowdhury, Muhammad E. H.
    [J]. FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 5