Automated analysis of protein NMR assignments using methods from artificial intelligence

被引:234
|
作者
Zimmerman, DE
Kulikowski, CA
Huang, YP
Feng, WQ
Tashiro, M
Shimotakahara, S
Chien, CY
Powers, R
Montelione, GT
机构
[1] RUTGERS STATE UNIV,CTR ADV BIOTECHNOL & MED,PISCATAWAY,NJ 08854
[2] RUTGERS STATE UNIV,DEPT BIOCHEM & MOL BIOL,PISCATAWAY,NJ 08854
[3] RUTGERS STATE UNIV,DEPT COMP SCI,PISCATAWAY,NJ 08854
[4] WYETH AYERST RES,DEPT BIOL STRUCT,PEARL RIVER,NY 10965
关键词
constraint satisfaction; expert system; heteronuclear triple-resonance experiments; isotope experiments; knowledge-based data structure;
D O I
10.1006/jmbi.1997.1052
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An expert system for determining resonance assignments from NMR spectra of proteins is described. Given the amino acid sequence, a two-dimensional N-15-H-1 heteronuclear correlation spectrum and seven to eight three-dimensional triple-resonance NMR spectra for seven proteins, AUTOASSIGN obtained an average of 98% of sequence-specific spin-system assignments with an error rate of less than 0.5%. Execution times on a Sparc 10 workstation varied from 16 seconds for smaller proteins with simple spectra to one to nine minutes for medium size proteins exhibiting numerous extra spin systems attributed to conformational isomerization. AUTOASSIGN combines symbolic constraint satisfaction methods with a domain-specific knowledge base to exploit the logical structure of the sequential assignment problem, the specific features of the various NMR experiments, and the expected chemical shift frequencies of different amino acids. The current implementation specializes in the analysis of data derived from the most sensitive of the currently available triple-resonance experiments. Potential extensions of the system for analysis of additional types of protein NMR data are also discussed. (C) 1997 Academic Press Limited.
引用
收藏
页码:592 / 610
页数:19
相关论文
共 50 条
  • [41] AUTOMATED HISTOPATHOLOGIC CLASSIFICATION OF BRAIN TUMORS USING ARTIFICIAL INTELLIGENCE
    Xie, Quin
    Han, Dominick
    Faust, Kevin
    Aldape, Kenneth
    Zadeh, Gelareh
    Volynskaya, Zoya
    Djuric, Ugljesa
    Diamandis, Phedias
    NEURO-ONCOLOGY, 2017, 19 : 181 - 181
  • [42] AUTOMATED SPERM MORPSHOLOGY TESTING USING ARTIFICIAL INTELLIGENCE.
    Thirumalaraju, P.
    Bormann, C. L.
    Kanakasabapathy, M.
    Doshi, F.
    Souter, I.
    Dimitriadis, I.
    Shafiee, H.
    FERTILITY AND STERILITY, 2018, 110 (04) : E432 - E432
  • [43] Automated Data Harmonization (ADH) using Artificial Intelligence (AI)
    Anjan Dutta
    Tomal Deb
    Shrikant Pathak
    OPSEARCH, 2021, 58 : 257 - 275
  • [44] Automated Registration of Multiangle SAR Images Using Artificial Intelligence
    Chopra, Pooja
    Gollamandala, Vijay Suresh
    Ahmed, Ahmed Najat
    Babu, S. B. G. Tilak
    Kaur, Chamandeep
    Achyutha Prasad, N.
    Nuagah, Stephen Jeswinde
    MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [45] Automated Data Harmonization (ADH) using Artificial Intelligence (AI)
    Dutta, Anjan
    Deb, Tomal
    Pathak, Shrikant
    OPSEARCH, 2021, 58 (02) : 257 - 275
  • [46] Automated sperm morphology assessment using artificial intelligence technology
    Agarwal, A.
    Selvam, M. K. Panne
    HUMAN REPRODUCTION, 2021, 36 : 142 - 143
  • [47] Automated left ventricular dimension assessment using artificial intelligence
    Stowell, C.
    Howard, J.
    Cole, G.
    Ananthan, K.
    Demetrescu, C.
    Pearce, K.
    Rajani, R.
    Sehmi, J.
    Vimalesvaran, K.
    Kanaganayagam, S.
    Ghosh, A.
    Chambers, J.
    Rana, B.
    Francis, D.
    Shun-Shin, M.
    EUROPEAN HEART JOURNAL, 2021, 42 : 1 - 1
  • [48] Automated identification of hip arthroplasty implants using artificial intelligence
    Zibo Gong
    Yonghui Fu
    Ming He
    Xinzhe Fu
    Scientific Reports, 12
  • [50] Automated identification of hip arthroplasty implants using artificial intelligence
    Gong, Zibo
    Fu, Yonghui
    He, Ming
    Fu, Xinzhe
    SCIENTIFIC REPORTS, 2022, 12 (01)