ON A KELVIN-VOIGT VISCOELASTIC WAVE EQUATION WITH STRONG DELAY

被引:6
|
作者
Demchenko, Hanna [1 ]
Anikushyn, Andrii [2 ]
Pokojovy, Michael [3 ]
机构
[1] Masaryk Univ, Fac Econ & Adm, Brno 60200, Czech Republic
[2] Taras Shevcheno Natl Univ Kyiv, Dept Comp Sci & Cybernet, UA-02000 Kiev, Ukraine
[3] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
关键词
wave equation; Kelvin-Voigt damping; time-localized delay; well-posedness; exponential stability; singular limit; GLOBAL EXISTENCE; TIME DELAYS; EXPONENTIAL DECAY; STABILIZATION; BOUNDARY; STABILITY; BEHAVIOR; SYSTEMS; ENERGY; TERM;
D O I
10.1137/18M1219308
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An initial-boundary value problem for a viscoelastic wave equation subject to a strong time-localized delay in a Kelvin-Voigt-type material law is considered. After transforming the equation to an abstract Cauchy problem on the extended phase space, a global well-posedness theory is established using the operator semigroup theory both in Sobolev-valued C-0- and BV-spaces. Under appropriate assumptions on the coefficients, a global exponential decay rate is obtained and the stability region in the parameter space is further explored using Lyapunov's indirect method. The singular limit tau -> 0 is studied with the aid of the energy method. Finally, a numerical example from a real-world application in biomechanics is presented.
引用
收藏
页码:4382 / 4412
页数:31
相关论文
共 50 条
  • [1] Periodic homogenization for Kelvin-Voigt viscoelastic media with a Kelvin-Voigt viscoelastic interphase
    Daridon, Loic
    Licht, Christian
    Orankitjaroen, Somsak
    Pagano, Stephane
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2016, 58 : 163 - 171
  • [2] Stability of an abstract-wave equation with delay and a Kelvin-Voigt damping
    Ammari, Kais
    Nicaise, Serge
    Pignotti, Cristina
    ASYMPTOTIC ANALYSIS, 2015, 95 (1-2) : 21 - 38
  • [3] STABILITY OF THE WAVE EQUATION WITH LOCALIZED KELVIN-VOIGT DAMPING AND BOUNDARY DELAY FEEDBACK
    Nicaise, Serge
    Pignotti, Cristina
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (03): : 791 - 813
  • [4] Logarithmic Decay of Wave Equation with Kelvin-Voigt Damping
    Robbiano, Luc
    Zhang, Qiong
    MATHEMATICS, 2020, 8 (05)
  • [5] Stabilization for the Wave Equation with Singular Kelvin-Voigt Damping
    Ammari, Kais
    Hassine, Fathi
    Robbiano, Luc
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 236 (02) : 577 - 601
  • [6] Spectral analysis of a wave equation with Kelvin-Voigt damping
    Guo, Bao-Zhu
    Wang, Jun-Min
    Zhang, Guo-Dong
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2010, 90 (04): : 323 - 342
  • [7] Stability results for an elastic-viscoelastic wave equation with localized Kelvin-Voigt damping and with an internal or boundary time delay
    Ghader, Mouhammad
    Nasser, Rayan
    Wehbe, Ali
    ASYMPTOTIC ANALYSIS, 2021, 125 (1-2) : 1 - 57
  • [8] Frequency Analysis of a Wave Equation with Kelvin-Voigt Damping
    Guo, Bao-Zhu
    Wang, Jun-Min
    Zhang, Guo-Dong
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 4471 - 4476
  • [9] An inverse problem for the transmission wave equation with Kelvin-Voigt damping
    Zhao, Zhongliu
    Zhang, Wensheng
    APPLICABLE ANALYSIS, 2023, 102 (13) : 3710 - 3732
  • [10] EFFECT OF KELVIN-VOIGT DAMPING ON SPECTRUM ANALYSIS OF A WAVE EQUATION
    Lu, Liqing
    Zhao, Liyan
    Hu, Jing
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,