Stability of an abstract-wave equation with delay and a Kelvin-Voigt damping

被引:17
|
作者
Ammari, Kais [1 ]
Nicaise, Serge [2 ]
Pignotti, Cristina [3 ]
机构
[1] Univ Monastir, Fac Sci Monastir, Dept Math, UR Anal & Control Pde,UR 13ES64, Monastir 5019, Tunisia
[2] Univ Valenciennes & Hainaut Cambresis, CNRS, FR 2956, LAMAV, Valenciennes, France
[3] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, I-67100 Laquila, Italy
关键词
internal stabilization; Kelvin-Voigt damping; abstract wave equation with delay; FEEDBACK STABILIZATION; EVOLUTION-EQUATIONS; TIME DELAYS; BOUNDARY; INSTABILITY; RESPECT; SYSTEMS;
D O I
10.3233/ASY-151317
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a stabilization problem for an abstract wave equation with delay and a Kelvin-Voigt damping. We prove an exponential stability result for appropriate damping coefficients. The proof of the main result is based on a frequency-domain approach.
引用
收藏
页码:21 / 38
页数:18
相关论文
共 50 条
  • [1] STABILITY OF THE WAVE EQUATION WITH LOCALIZED KELVIN-VOIGT DAMPING AND BOUNDARY DELAY FEEDBACK
    Nicaise, Serge
    Pignotti, Cristina
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (03): : 791 - 813
  • [2] Stability of the wave equation with localized Kelvin-Voigt damping and dynamic Wentzell boundary conditions with delay
    Dahmani, Abdelhakim
    Khemmoudj, Ammar
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (04) : 3649 - 3673
  • [3] Logarithmic Decay of Wave Equation with Kelvin-Voigt Damping
    Robbiano, Luc
    Zhang, Qiong
    [J]. MATHEMATICS, 2020, 8 (05)
  • [4] Spectral analysis of a wave equation with Kelvin-Voigt damping
    Guo, Bao-Zhu
    Wang, Jun-Min
    Zhang, Guo-Dong
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2010, 90 (04): : 323 - 342
  • [5] Stabilization for the Wave Equation with Singular Kelvin-Voigt Damping
    Ammari, Kais
    Hassine, Fathi
    Robbiano, Luc
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 236 (02) : 577 - 601
  • [6] Frequency Analysis of a Wave Equation with Kelvin-Voigt Damping
    Guo, Bao-Zhu
    Wang, Jun-Min
    Zhang, Guo-Dong
    [J]. PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 4471 - 4476
  • [7] ON A KELVIN-VOIGT VISCOELASTIC WAVE EQUATION WITH STRONG DELAY
    Demchenko, Hanna
    Anikushyn, Andrii
    Pokojovy, Michael
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (06) : 4382 - 4412
  • [8] An inverse problem for the transmission wave equation with Kelvin-Voigt damping
    Zhao, Zhongliu
    Zhang, Wensheng
    [J]. APPLICABLE ANALYSIS, 2023, 102 (13) : 3710 - 3732
  • [9] EFFECT OF KELVIN-VOIGT DAMPING ON SPECTRUM ANALYSIS OF A WAVE EQUATION
    Lu, Liqing
    Zhao, Liyan
    Hu, Jing
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [10] Stability of the wave equations on a tree with local Kelvin-Voigt damping
    Ammari, Kais
    Liu, Zhuangyi
    Shel, Farhat
    [J]. SEMIGROUP FORUM, 2020, 100 (02) : 364 - 382