Frequency Analysis of a Wave Equation with Kelvin-Voigt Damping

被引:1
|
作者
Guo, Bao-Zhu [1 ,2 ]
Wang, Jun-Min [3 ]
Zhang, Guo-Dong [2 ]
机构
[1] Acad Sinica, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Univ Witwatersrand, Sch Computat & Appl Sci, ZA-2050 Johannesburg, South Africa
[3] Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
EULER-BERNOULLI BEAM; RIESZ BASIS PROPERTY; EXPONENTIAL STABILITY; STABILIZATION; SPECTRUM; FEEDBACK; SYSTEM;
D O I
10.1109/CDC.2009.5399989
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A vibrating system with some kind of internal damping represents a distributed or passive control. In this article, a wave equation with clamped boundary conditions and internal Kelvin-Voigt damping is considered. It is shown that the spectrum of system operator is composed of two parts: point spectrum and continuous spectrum. The point spectrum is consist of isolated eigenvalues of finite algebraic multiplicity, and the continuous spectrum is an interval on the left real axis. The asymptotic behavior of eigenvalues is presented.
引用
收藏
页码:4471 / 4476
页数:6
相关论文
共 50 条
  • [1] Spectral analysis of a wave equation with Kelvin-Voigt damping
    Guo, Bao-Zhu
    Wang, Jun-Min
    Zhang, Guo-Dong
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2010, 90 (04): : 323 - 342
  • [2] EFFECT OF KELVIN-VOIGT DAMPING ON SPECTRUM ANALYSIS OF A WAVE EQUATION
    Lu, Liqing
    Zhao, Liyan
    Hu, Jing
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [3] Logarithmic Decay of Wave Equation with Kelvin-Voigt Damping
    Robbiano, Luc
    Zhang, Qiong
    [J]. MATHEMATICS, 2020, 8 (05)
  • [4] Stabilization for the Wave Equation with Singular Kelvin-Voigt Damping
    Ammari, Kais
    Hassine, Fathi
    Robbiano, Luc
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 236 (02) : 577 - 601
  • [5] An inverse problem for the transmission wave equation with Kelvin-Voigt damping
    Zhao, Zhongliu
    Zhang, Wensheng
    [J]. APPLICABLE ANALYSIS, 2023, 102 (13) : 3710 - 3732
  • [6] Stability of an abstract-wave equation with delay and a Kelvin-Voigt damping
    Ammari, Kais
    Nicaise, Serge
    Pignotti, Cristina
    [J]. ASYMPTOTIC ANALYSIS, 2015, 95 (1-2) : 21 - 38
  • [7] Decay for the Kelvin-Voigt damped wave equation: Piecewise smooth damping
    Burq, Nicolas
    Sun, Chenmin
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (01): : 446 - 483
  • [8] A constructive method for the stabilization of the wave equation with localized Kelvin-Voigt damping
    Tebou, Louis
    [J]. COMPTES RENDUS MATHEMATIQUE, 2012, 350 (11-12) : 603 - 608
  • [9] Longtime behavior of multidimensional wave equation with local Kelvin-Voigt damping
    Han, Zhong-Jie
    Yu, Kai
    Zhang, Qiong
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (06):
  • [10] On localized Kelvin-Voigt damping
    Renardy, M
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2004, 84 (04): : 280 - 283