EFFECT OF KELVIN-VOIGT DAMPING ON SPECTRUM ANALYSIS OF A WAVE EQUATION

被引:0
|
作者
Lu, Liqing [1 ]
Zhao, Liyan [1 ]
Hu, Jing [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
基金
美国国家科学基金会;
关键词
Wave equation; Riesz basis; spectrum-determined growth condition; Kelvin-Voigt damping; EXPONENTIAL DECAY; ENERGY; STABILITY; STABILIZATION; BEAM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article concerns a one-dimensional wave equation with a small amount of Kelvin-Voigt damping. We give a detailed spectrum analysis of the system operator, from which we show that the generalized eigenfunction forms a Riesz basis for the state Hilbert space. That is, the precise and explicit expression of the eigenvalues is deduced and the spectrum-determined growth condition is established. Hence the exponential stability of the system is obtained.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Spectral analysis of a wave equation with Kelvin-Voigt damping
    Guo, Bao-Zhu
    Wang, Jun-Min
    Zhang, Guo-Dong
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2010, 90 (04): : 323 - 342
  • [2] Frequency Analysis of a Wave Equation with Kelvin-Voigt Damping
    Guo, Bao-Zhu
    Wang, Jun-Min
    Zhang, Guo-Dong
    [J]. PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 4471 - 4476
  • [3] Logarithmic Decay of Wave Equation with Kelvin-Voigt Damping
    Robbiano, Luc
    Zhang, Qiong
    [J]. MATHEMATICS, 2020, 8 (05)
  • [4] Stabilization for the Wave Equation with Singular Kelvin-Voigt Damping
    Ammari, Kais
    Hassine, Fathi
    Robbiano, Luc
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 236 (02) : 577 - 601
  • [5] An inverse problem for the transmission wave equation with Kelvin-Voigt damping
    Zhao, Zhongliu
    Zhang, Wensheng
    [J]. APPLICABLE ANALYSIS, 2023, 102 (13) : 3710 - 3732
  • [6] On the spectrum of Euler-Bernoulli beam equation with Kelvin-Voigt damping
    Zhang, Guo-Dong
    Guo, Bao-Zhu
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 374 (01) : 210 - 229
  • [7] Stability of an abstract-wave equation with delay and a Kelvin-Voigt damping
    Ammari, Kais
    Nicaise, Serge
    Pignotti, Cristina
    [J]. ASYMPTOTIC ANALYSIS, 2015, 95 (1-2) : 21 - 38
  • [8] Decay for the Kelvin-Voigt damped wave equation: Piecewise smooth damping
    Burq, Nicolas
    Sun, Chenmin
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (01): : 446 - 483
  • [9] A constructive method for the stabilization of the wave equation with localized Kelvin-Voigt damping
    Tebou, Louis
    [J]. COMPTES RENDUS MATHEMATIQUE, 2012, 350 (11-12) : 603 - 608
  • [10] Longtime behavior of multidimensional wave equation with local Kelvin-Voigt damping
    Han, Zhong-Jie
    Yu, Kai
    Zhang, Qiong
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (06):