ON A KELVIN-VOIGT VISCOELASTIC WAVE EQUATION WITH STRONG DELAY

被引:6
|
作者
Demchenko, Hanna [1 ]
Anikushyn, Andrii [2 ]
Pokojovy, Michael [3 ]
机构
[1] Masaryk Univ, Fac Econ & Adm, Brno 60200, Czech Republic
[2] Taras Shevcheno Natl Univ Kyiv, Dept Comp Sci & Cybernet, UA-02000 Kiev, Ukraine
[3] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
关键词
wave equation; Kelvin-Voigt damping; time-localized delay; well-posedness; exponential stability; singular limit; GLOBAL EXISTENCE; TIME DELAYS; EXPONENTIAL DECAY; STABILIZATION; BOUNDARY; STABILITY; BEHAVIOR; SYSTEMS; ENERGY; TERM;
D O I
10.1137/18M1219308
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An initial-boundary value problem for a viscoelastic wave equation subject to a strong time-localized delay in a Kelvin-Voigt-type material law is considered. After transforming the equation to an abstract Cauchy problem on the extended phase space, a global well-posedness theory is established using the operator semigroup theory both in Sobolev-valued C-0- and BV-spaces. Under appropriate assumptions on the coefficients, a global exponential decay rate is obtained and the stability region in the parameter space is further explored using Lyapunov's indirect method. The singular limit tau -> 0 is studied with the aid of the energy method. Finally, a numerical example from a real-world application in biomechanics is presented.
引用
收藏
页码:4382 / 4412
页数:31
相关论文
共 50 条
  • [41] Exponential stability result for the wave equation with Kelvin-Voigt damping and past history subject to Wentzell boundary condition and delay term
    Kechiche, Dounya
    Khemmoudj, Ammar
    Medjden, Mohammed
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (03) : 1546 - 1576
  • [42] The viscoelastic paradox in a nonlinear Kelvin-Voigt type model of dynamic fracture
    Caponi, Maicol
    Carbotti, Alessandro
    Sapio, Francesco
    JOURNAL OF EVOLUTION EQUATIONS, 2024, 24 (03)
  • [43] Stability in Kelvin-Voigt poroelasticity
    Straughan, Brian
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2021, 14 (02): : 357 - 366
  • [44] Damping properties of the viscoelastic material described by fractional Kelvin-Voigt model
    Zhang, W
    Shimizu, N
    JSME INTERNATIONAL JOURNAL SERIES C-MECHANICAL SYSTEMS MACHINE ELEMENTS AND MANUFACTURING, 1999, 42 (01): : 1 - 9
  • [45] On the fractional Kelvin-Voigt oscillator
    Vaz, Jayme, Jr.
    de Oliveira, Edmundo Capelas
    MATHEMATICS IN ENGINEERING, 2022, 4 (01):
  • [46] General decay of solutions for a viscoelastic porous system with Kelvin-Voigt damping
    Makheloufi, Hocine
    Apalara, Tijani A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 538 (01)
  • [47] Lack of exponential stability to Timoshenko system with viscoelastic Kelvin-Voigt type
    Malacarne, Andreia
    Munoz Rivera, Jaime Edilberto
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):
  • [48] Rayleigh Surface Waves on a Kelvin-Voigt Viscoelastic Half-Space
    Stan Chiriţă
    Michele Ciarletta
    Vincenzo Tibullo
    Journal of Elasticity, 2014, 115 : 61 - 76
  • [49] 3-D wave simulation in anelastic media using the Kelvin-Voigt constitutive equation
    Carcione, JM
    Poletto, F
    Gei, D
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 196 (01) : 282 - 297
  • [50] Stability of the wave equations on a tree with local Kelvin-Voigt damping
    Ammari, Kais
    Liu, Zhuangyi
    Shel, Farhat
    SEMIGROUP FORUM, 2020, 100 (02) : 364 - 382