ON A KELVIN-VOIGT VISCOELASTIC WAVE EQUATION WITH STRONG DELAY

被引:6
|
作者
Demchenko, Hanna [1 ]
Anikushyn, Andrii [2 ]
Pokojovy, Michael [3 ]
机构
[1] Masaryk Univ, Fac Econ & Adm, Brno 60200, Czech Republic
[2] Taras Shevcheno Natl Univ Kyiv, Dept Comp Sci & Cybernet, UA-02000 Kiev, Ukraine
[3] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
关键词
wave equation; Kelvin-Voigt damping; time-localized delay; well-posedness; exponential stability; singular limit; GLOBAL EXISTENCE; TIME DELAYS; EXPONENTIAL DECAY; STABILIZATION; BOUNDARY; STABILITY; BEHAVIOR; SYSTEMS; ENERGY; TERM;
D O I
10.1137/18M1219308
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An initial-boundary value problem for a viscoelastic wave equation subject to a strong time-localized delay in a Kelvin-Voigt-type material law is considered. After transforming the equation to an abstract Cauchy problem on the extended phase space, a global well-posedness theory is established using the operator semigroup theory both in Sobolev-valued C-0- and BV-spaces. Under appropriate assumptions on the coefficients, a global exponential decay rate is obtained and the stability region in the parameter space is further explored using Lyapunov's indirect method. The singular limit tau -> 0 is studied with the aid of the energy method. Finally, a numerical example from a real-world application in biomechanics is presented.
引用
收藏
页码:4382 / 4412
页数:31
相关论文
共 50 条
  • [31] Comparison between classical Kelvin-Voigt and fractional derivative Kelvin-Voigt models in prediction of linear viscoelastic behaviour of waste activated sludge
    Farno, Ehsan
    Baudez, Jean-Christophe
    Eshtiaghi, Nicky
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 613 : 1031 - 1036
  • [32] Exponential decay for the semilinear wave equation with localized frictional and Kelvin-Voigt dissipating mechanisms
    Cavalcanti, Marcelo M.
    Gonzalez Martinez, Victor H.
    ASYMPTOTIC ANALYSIS, 2022, 128 (02) : 273 - 293
  • [33] Plane Acoustic Wave Propagation through a Composite of Elastic and Kelvin-Voigt Viscoelastic Material Layers
    Shamaev, A. S.
    Shumilova, V. V.
    MECHANICS OF SOLIDS, 2017, 52 (01) : 25 - 34
  • [34] Uniform Stabilization for the Semi-linear Wave Equation with Nonlinear Kelvin-Voigt Damping
    Ammari, Kais
    Cavalcanti, Marcelo M.
    Mansouri, Sabeur
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 90 (02):
  • [35] Damping properties of the viscoelastic material described by fractional Kelvin-Voigt model
    Zhang, Wei
    Shimizu, Nobuyuki
    JSME International Journal, Series C: Dynamics, Control, Robotics, Design and Manufacturing, 1999, 42 (01): : 1 - 9
  • [36] BACKWARD EULER SCHEMES FOR THE KELVIN-VOIGT VISCOELASTIC FLUID FLOW MODEL
    Pany, Ambit K.
    Paikray, Susanta K.
    Padhy, Sudarsan
    Pani, Amiya K.
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2017, 14 (01) : 126 - 151
  • [37] Existence and uniqueness for a viscoelastic Kelvin-Voigt model with nonconvex stored energy
    Koumatos, Konstantinos
    Lattanzio, Corrado
    Spirito, Stefano
    Tzavaras, Athanasios E.
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2023, 20 (02) : 433 - 474
  • [38] Rayleigh Surface Waves on a Kelvin-Voigt Viscoelastic Half-Space
    Chirita, Stan
    Ciarletta, Michele
    Tibullo, Vincenzo
    JOURNAL OF ELASTICITY, 2014, 115 (01) : 61 - 76
  • [39] On localized Kelvin-Voigt damping
    Renardy, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2004, 84 (04): : 280 - 283
  • [40] Stability of coupled wave equations with variable coefficients, localised Kelvin-Voigt damping and time delay
    Herbadji, Houssem
    Khemmoudj, Ammar
    SEMIGROUP FORUM, 2024, 109 (02) : 390 - 423