Causal Inference on Quantiles with an Obstetric Application

被引:27
|
作者
Zhang, Zhiwei [1 ]
Chen, Zhen [2 ]
Troendle, James F. [3 ]
Zhang, Jun [4 ,5 ]
机构
[1] US FDA, Div Biostat, Off Surveillance & Biometr, Ctr Devices & Radiol Hlth, Silver Spring, MD 20993 USA
[2] Eunice Kennedy Shriver Natl Inst Child Hlth & Hum, Biostat & Bioinformat Branch, Div Epidemiol Stat & Prevent Res, NIH, Bethesda, MD 20892 USA
[3] NHLBI, Off Biostat Res, Div Cardiovasc Sci, NIH, Bethesda, MD 20892 USA
[4] Shanghai Jiao Tong Univ, Sch Med, Xinhua Hosp, MOE, Shanghai 200092, Peoples R China
[5] Shanghai Jiao Tong Univ, Sch Med, Xinhua Hosp, Shanghai Key Lab Childrens Environm Hlth, Shanghai 200092, Peoples R China
关键词
Double robustness; Inverse probability weighting; Missing data; Outcome regression; Propensity score; Stratification; Subclassification; DOUBLY ROBUST ESTIMATION; PROPENSITY SCORE; BIAS;
D O I
10.1111/j.1541-0420.2011.01712.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The current statistical literature on causal inference is primarily concerned with population means of potential outcomes, while the current statistical practice also involves other meaningful quantities such as quantiles. Motivated by the Consortium on Safe Labor (CSL), a large observational study of obstetric labor progression, we propose and compare methods for estimating marginal quantiles of potential outcomes as well as quantiles among the treated. By adapting existing methods and techniques, we derive estimators based on outcome regression (OR), inverse probability weighting, and stratification, as well as a doubly robust (DR) estimator. By incorporating stratification into the DR estimator, we further develop a hybrid estimator with enhanced numerical stability at the expense of a slight bias under misspecification of the OR model. The proposed methods are illustrated with the CSL data and evaluated in simulation experiments mimicking the CSL.
引用
收藏
页码:697 / 706
页数:10
相关论文
共 50 条
  • [21] Causal inference for psychologists who think that causal inference is not for them
    Rohrer, Julia M.
    [J]. SOCIAL AND PERSONALITY PSYCHOLOGY COMPASS, 2024, 18 (03)
  • [22] Bayesian causal effects in quantiles: Accounting for heteroscedasticity
    Chen, Cathy W. S.
    Gerlach, Richard
    Wei, D. C. M.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (06) : 1993 - 2007
  • [23] Automated causal inference in application to randomized controlled clinical trials
    Ji Q. Wu
    Nanda Horeweg
    Marco de Bruyn
    Remi A. Nout
    Ina M. Jürgenliemk-Schulz
    Ludy C. H. W. Lutgens
    Jan J. Jobsen
    Elzbieta M. van der Steen-Banasik
    Hans W. Nijman
    Vincent T. H. B. M. Smit
    Tjalling Bosse
    Carien L. Creutzberg
    Viktor H. Koelzer
    [J]. Nature Machine Intelligence, 2022, 4 : 436 - 444
  • [24] Automated causal inference in application to randomized controlled clinical trials
    Wu, Ji Q.
    Horeweg, Nanda
    de Bruyn, Marco
    Nout, Remi A.
    Jurgenliemk-Schulz, Ina M.
    Lutgens, Ludy C. H. W.
    Jobsen, Jan J.
    Van der Steen-Banasik, Elzbieta M.
    Nijman, Hans W.
    Smit, Vincent T. H. B. M.
    Bosse, Tjalling
    Creutzberg, Carien L.
    Koelzer, Viktor H.
    [J]. NATURE MACHINE INTELLIGENCE, 2022, 4 (05) : 436 - +
  • [25] Distance Metrics for Measuring Joint Dependence with Application to Causal Inference
    Chakraborty, Shubhadeep
    Zhang, Xianyang
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (528) : 1638 - 1650
  • [26] SUBSAMPLING INFERENCE FOR NONPARAMETRIC EXTREMAL CONDITIONAL QUANTILES
    Kurisu, Daisuke
    Otsu, Taisuke
    [J]. ECONOMETRIC THEORY, 2023,
  • [27] Inference for Optimal Split Point in Conditional Quantiles
    Fan, Yanqin
    Liu, Ruixuan
    Zhu, Dongming
    [J]. FRONTIERS OF ECONOMICS IN CHINA, 2016, 11 (01) : 40 - 59
  • [28] ON SEMIPARAMETRIC PIVOTAL BAYESIAN-INFERENCE FOR QUANTILES
    SWARTZ, TB
    VILLEGAS, C
    MARTINEZ, CJ
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1995, 24 (10) : 2499 - 2515
  • [29] NONPARAMETRIC INFERENCE FOR CONDITIONAL QUANTILES OF TIME SERIES
    Xu, Ke-Li
    [J]. ECONOMETRIC THEORY, 2013, 29 (04) : 673 - 698
  • [30] The Causal Effects of Causal Inference Pedagogy
    Swanson, Sonja A. A.
    [J]. EPIDEMIOLOGY, 2023, 34 (05) : 611 - 613