The critical point equation on Kenmotsu and almost Kenmotsu manifolds

被引:5
|
作者
Patra, Dhriti Sundar [1 ]
Ghosh, Amalendu [2 ]
Bhattacharyya, Arindam [3 ]
机构
[1] Birla Inst Technol Mesra, Dept Math, Ranchi 835215, Bihar, India
[2] Chandernagore Coll, Dept Math, Hooghly 712136, WB, India
[3] Jadavpur Univ, Dept Math, 188 Raja SC Mullick Rd, Kolkata 700032, India
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2020年 / 97卷 / 1-2期
关键词
total scalar curvature functional; the critical point equation; Kenmotsu manifold; almost Kenmotsu manifold; generalized nullity distribution; TOTAL SCALAR CURVATURE;
D O I
10.5486/PMD.2020.8702
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the critical point equation (shortly, CPE) within the framework of Kenmotsu and almost Kenmotsu manifolds. First, we prove that a complete Kenmotsu metric satisfying the CPE is Einstein and locally isometric to the hyperbolic space H2n+1. In the case of Kenmotsu manifolds, it is possible to determine the potential function explicitly (locally). We also provide some examples of Kenmotsu and almost Kenmotsu manifolds that satisfy the CPE.
引用
收藏
页码:85 / 99
页数:15
相关论文
共 50 条
  • [21] Almost Kenmotsu manifolds with conformal Reeb foliation
    Pastore, Anna Maria
    Saltarelli, Vincenzo
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2011, 18 (04) : 655 - 666
  • [22] ON ALMOST KENMOTSU MANIFOLDS WITH GENERALIZED NULLITY DISTRIBUTION
    Ghosh, G.
    De, U. C.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2020, 89 (02): : 309 - 317
  • [23] ON THE η-PARALLELISM IN ALMOST KENMOTSU 3-MANIFOLDS
    Inoguchi, Jun-Ichi
    Lee, Ji-Eun
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (06) : 1303 - 1336
  • [24] GRADIENT RICCI SOLITONS ON ALMOST KENMOTSU MANIFOLDS
    Wang, Yaning
    De, Uday Chand
    Liu, Ximin
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2015, 98 (112): : 227 - 235
  • [25] Conformal η-Ricci almost solitons of Kenmotsu manifolds
    Dey, Santu
    Uddin, Siraj
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (08)
  • [26] Conformal vector fields on almost Kenmotsu manifolds
    Uday Chand De
    Arpan Sardar
    Krishnendu De
    Afrika Matematika, 2023, 34
  • [27] Almost Kenmotsu (k, μ)′-manifolds with Yamabe solitons
    Wang, Yaning
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 115 (01)
  • [28] Some results on (k, )-almost Kenmotsu manifolds
    Wang, Yaning
    Wang, Wenjie
    QUAESTIONES MATHEMATICAE, 2018, 41 (04) : 469 - 481
  • [29] A STUDY ON (k, mu)'-ALMOST KENMOTSU MANIFOLDS
    Li, Jin
    Liu, Ximin
    Ning, Wenfeng
    HONAM MATHEMATICAL JOURNAL, 2018, 40 (02): : 347 - 354
  • [30] On Einstein-type almost Kenmotsu manifolds
    Kumara, Huchchappa Aruna
    Praveena, Mundalamane Manjappa
    Naik, Devaraja Mallesha
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2023, 43 (03): : 141 - 147