The critical point equation on Kenmotsu and almost Kenmotsu manifolds

被引:5
|
作者
Patra, Dhriti Sundar [1 ]
Ghosh, Amalendu [2 ]
Bhattacharyya, Arindam [3 ]
机构
[1] Birla Inst Technol Mesra, Dept Math, Ranchi 835215, Bihar, India
[2] Chandernagore Coll, Dept Math, Hooghly 712136, WB, India
[3] Jadavpur Univ, Dept Math, 188 Raja SC Mullick Rd, Kolkata 700032, India
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2020年 / 97卷 / 1-2期
关键词
total scalar curvature functional; the critical point equation; Kenmotsu manifold; almost Kenmotsu manifold; generalized nullity distribution; TOTAL SCALAR CURVATURE;
D O I
10.5486/PMD.2020.8702
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the critical point equation (shortly, CPE) within the framework of Kenmotsu and almost Kenmotsu manifolds. First, we prove that a complete Kenmotsu metric satisfying the CPE is Einstein and locally isometric to the hyperbolic space H2n+1. In the case of Kenmotsu manifolds, it is possible to determine the potential function explicitly (locally). We also provide some examples of Kenmotsu and almost Kenmotsu manifolds that satisfy the CPE.
引用
收藏
页码:85 / 99
页数:15
相关论文
共 50 条
  • [41] Einstein-Type Metrics on Almost Kenmotsu Manifolds
    Uday Chand De
    Mohan Khatri
    Jay Prakash Singh
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [42] Ricci Semisymmetric Almost Kenmotsu Manifolds with Nullity Distributions
    Deshmukh, Sharief
    De, Uday Chand
    Zhao, Peibiao
    FILOMAT, 2018, 32 (01) : 179 - 186
  • [43] Einstein-Type Metrics on Almost Kenmotsu Manifolds
    De, Uday Chand
    Khatri, Mohan
    Singh, Jay Prakash
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (04)
  • [44] On Almost Kenmotsu Manifolds Satisfying Some Nullity Distributions
    Yaning Wang
    Ximin Liu
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2016, 86 : 347 - 353
  • [45] CLASSIFICATION OF SOME ALMOST α-PARA-KENMOTSU MANIFOLDS
    Pan, Quanxiang
    Liu, Ximin
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (05): : 1327 - 1341
  • [47] k-ALMOST YAMABE SOLITONS ON KENMOTSU MANIFOLDS
    De, Krishnendu
    De, Uday Chand
    HONAM MATHEMATICAL JOURNAL, 2021, 43 (01): : 115 - 122
  • [48] Riemannian semisymmetric almost Kenmotsu manifolds and nullity distributions
    Wang, Yaning
    Liu, Ximin
    ANNALES POLONICI MATHEMATICI, 2014, 112 (01) : 37 - 46
  • [49] A study of conformal almost Ricci solitons on Kenmotsu manifolds
    Sarkar, Sumanjit
    Dey, Santu
    Bhattacharyya, Arindam
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (04)
  • [50] Second Order Parallel Tensor on Almost Kenmotsu Manifolds
    Venkatesha, Venkatesha
    Naik, Devaraja Mallesha
    Vanli, Aysel-Turgut
    KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (01): : 191 - 203