The critical point equation on Kenmotsu and almost Kenmotsu manifolds

被引:5
|
作者
Patra, Dhriti Sundar [1 ]
Ghosh, Amalendu [2 ]
Bhattacharyya, Arindam [3 ]
机构
[1] Birla Inst Technol Mesra, Dept Math, Ranchi 835215, Bihar, India
[2] Chandernagore Coll, Dept Math, Hooghly 712136, WB, India
[3] Jadavpur Univ, Dept Math, 188 Raja SC Mullick Rd, Kolkata 700032, India
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2020年 / 97卷 / 1-2期
关键词
total scalar curvature functional; the critical point equation; Kenmotsu manifold; almost Kenmotsu manifold; generalized nullity distribution; TOTAL SCALAR CURVATURE;
D O I
10.5486/PMD.2020.8702
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the critical point equation (shortly, CPE) within the framework of Kenmotsu and almost Kenmotsu manifolds. First, we prove that a complete Kenmotsu metric satisfying the CPE is Einstein and locally isometric to the hyperbolic space H2n+1. In the case of Kenmotsu manifolds, it is possible to determine the potential function explicitly (locally). We also provide some examples of Kenmotsu and almost Kenmotsu manifolds that satisfy the CPE.
引用
收藏
页码:85 / 99
页数:15
相关论文
共 50 条
  • [31] Conformal vector fields on almost Kenmotsu manifolds
    De, Uday Chand
    Sardar, Arpan
    De, Krishnendu
    AFRIKA MATEMATIKA, 2023, 34 (04)
  • [32] Almost Ricci-Yamabe solitons on Almost Kenmotsu manifolds
    Khatri, Mohan
    Singh, Jay Prakash
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (08)
  • [33] Riemann solitons and almost Riemann solitons on almost Kenmotsu manifolds
    Venkatesha, V.
    Kumara, H. Aruna
    Naik, Devaraja Mallesha
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (07)
  • [34] On Kenmotsu manifolds
    Jun, JB
    De, UC
    Pathak, G
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 42 (03) : 435 - 445
  • [35] Local symmetry on almost Kenmotsu three-manifolds
    Cho, Jong Taek
    HOKKAIDO MATHEMATICAL JOURNAL, 2016, 45 (03) : 435 - 442
  • [36] Ricci solitons on almost Kenmotsu 3-manifolds
    Wang, Yaning
    OPEN MATHEMATICS, 2017, 15 : 1236 - 1243
  • [37] Minimal Reeb vector fields on almost Kenmotsu manifolds
    Wang, Yaning
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2017, 67 (01) : 73 - 86
  • [38] HOMOGENEITY AND SYMMETRY ON ALMOST KENMOTSU 3-MANIFOLDS
    Wang, Yaning
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (04) : 917 - 934
  • [39] Minimal Reeb vector fields on almost Kenmotsu manifolds
    Yaning Wang
    Czechoslovak Mathematical Journal, 2017, 67 : 73 - 86
  • [40] On *-Conformal Ricci Solitons on a Class of Almost Kenmotsu Manifolds
    Majhi, Pradip
    Dey, Dibakar
    KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (04): : 781 - 790