Fast computation of spatially adaptive kernel estimates

被引:31
|
作者
Davies, Tilman M. [1 ]
Baddeley, Adrian [2 ,3 ]
机构
[1] Univ Otago, Dept Math & Stat, POB 56, Dunedin 9054, New Zealand
[2] Curtin Univ, Dept Math & Stat, GPO Box U1987, Perth, WA 6845, Australia
[3] CSIRO, Data61, Perth, WA, Australia
基金
澳大利亚研究理事会;
关键词
Bandwidth selection; Edge correction; Fourier transform; Intensity; Scale space; Spatial point process; DENSITY-ESTIMATION; BANDWIDTH SELECTION; SMOOTHING PARAMETER; CROSS-VALIDATION; BOOTSTRAP CHOICE; RISK; MATRICES;
D O I
10.1007/s11222-017-9772-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Kernel smoothing of spatial point data can often be improved using an adaptive, spatially varying bandwidth instead of a fixed bandwidth. However, computation with a varying bandwidth is much more demanding, especially when edge correction and bandwidth selection are involved. This paper proposes several new computational methods for adaptive kernel estimation from spatial point pattern data. A key idea is that a variable-bandwidth kernel estimator for d-dimensional spatial data can be represented as a slice of a fixed-bandwidth kernel estimator in -dimensional scale space, enabling fast computation using Fourier transforms. Edge correction factors have a similar representation. Different values of global bandwidth correspond to different slices of the scale space, so that bandwidth selection is greatly accelerated. Potential applications include estimation of multivariate probability density and spatial or spatiotemporal point process intensity, relative risk, and regression functions. The new methods perform well in simulations and in two real applications concerning the spatial epidemiology of primary biliary cirrhosis and the alarm calls of capuchin monkeys.
引用
收藏
页码:937 / 956
页数:20
相关论文
共 50 条
  • [41] Adaptive Spherical Gaussian Kernel for fast Relevance Vector Machine Regression
    Yuan, Jin
    Yu, Tao
    Wang, Kesheng
    Liu, Xuemei
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 2071 - +
  • [42] Adaptive Optimal Kernel Time Frequency Transform for Fast Moving Targets
    Jin, Yao
    Tao, Hong
    Fu, Wang Wan
    2017 17TH IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY (ICCT 2017), 2017, : 1575 - 1578
  • [43] Fast Computation of Global Sensitivity Kernel Database Based on Spectral-Element Simulations
    Elliott Sales de Andrade
    Qinya Liu
    Pure and Applied Geophysics, 2017, 174 : 2733 - 2761
  • [44] Fast computation of Hankel Transform using orthonormal exponential approximation of complex kernel function
    Gupta, PK
    Niwas, S
    Chaudhary, N
    JOURNAL OF EARTH SYSTEM SCIENCE, 2006, 115 (03) : 267 - 276
  • [45] Fast 3D kernel computation method for positron range correction in PET
    Li, Chong
    Scheins, Juergen
    Tellmann, Lutz
    Issa, Ahlam
    Wei, Long
    Shah, N. Jon
    Lerche, Christoph
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (02):
  • [46] Fast Computation of Global Sensitivity Kernel Database Based on Spectral-Element Simulations
    de Andrade, Elliott Sales
    Liu, Qinya
    PURE AND APPLIED GEOPHYSICS, 2017, 174 (07) : 2733 - 2761
  • [47] Fast computation of Hankel Transform using orthonormal exponential approximation of complex kernel function
    Pravin K. Gupta
    Sri Niwas
    Neeta Chaudhary
    Journal of Earth System Science, 2006, 115 : 267 - 276
  • [48] An adaptive algorithm for fast frequency response computation of planar microwave structures
    Prakash, VVS
    Yeo, J
    Mittra, R
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2004, 52 (03) : 920 - 926
  • [49] Fast computation of an optimal controller for large-scale adaptive optics
    Massioni, Paolo
    Kulcsar, Caroline
    Raynaud, Henri-Francois
    Conan, Jean-Marc
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2011, 28 (11) : 2298 - 2309
  • [50] Gaussian kernel adaptive filters with adaptive kernel bandwidth
    Zhao, Ji
    Zhang, Hongbin
    Zhang, J. Andrew
    SIGNAL PROCESSING, 2020, 166