Fast computation of spatially adaptive kernel estimates

被引:31
|
作者
Davies, Tilman M. [1 ]
Baddeley, Adrian [2 ,3 ]
机构
[1] Univ Otago, Dept Math & Stat, POB 56, Dunedin 9054, New Zealand
[2] Curtin Univ, Dept Math & Stat, GPO Box U1987, Perth, WA 6845, Australia
[3] CSIRO, Data61, Perth, WA, Australia
基金
澳大利亚研究理事会;
关键词
Bandwidth selection; Edge correction; Fourier transform; Intensity; Scale space; Spatial point process; DENSITY-ESTIMATION; BANDWIDTH SELECTION; SMOOTHING PARAMETER; CROSS-VALIDATION; BOOTSTRAP CHOICE; RISK; MATRICES;
D O I
10.1007/s11222-017-9772-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Kernel smoothing of spatial point data can often be improved using an adaptive, spatially varying bandwidth instead of a fixed bandwidth. However, computation with a varying bandwidth is much more demanding, especially when edge correction and bandwidth selection are involved. This paper proposes several new computational methods for adaptive kernel estimation from spatial point pattern data. A key idea is that a variable-bandwidth kernel estimator for d-dimensional spatial data can be represented as a slice of a fixed-bandwidth kernel estimator in -dimensional scale space, enabling fast computation using Fourier transforms. Edge correction factors have a similar representation. Different values of global bandwidth correspond to different slices of the scale space, so that bandwidth selection is greatly accelerated. Potential applications include estimation of multivariate probability density and spatial or spatiotemporal point process intensity, relative risk, and regression functions. The new methods perform well in simulations and in two real applications concerning the spatial epidemiology of primary biliary cirrhosis and the alarm calls of capuchin monkeys.
引用
收藏
页码:937 / 956
页数:20
相关论文
共 50 条
  • [11] Fast computation of geometric moments using a symmetric kernel
    Wee, Chong-Yaw
    Paramesran, Raveendran
    Mukundan, R.
    PATTERN RECOGNITION, 2008, 41 (07) : 2369 - 2380
  • [12] Fast computation of adaptive wavelet expansions
    A. Barinka
    W. Dahmen
    R. Schneider
    Numerische Mathematik, 2007, 105 : 549 - 589
  • [13] Fast computation of adaptive wavelet expansions
    Barinka, A.
    Dahmen, W.
    Schneider, R.
    NUMERISCHE MATHEMATIK, 2007, 105 (04) : 549 - 589
  • [14] Fast Kernel Matrix Computation for Big Data Clustering
    Tsapanos, Nikolaos
    Tefas, Anastasios
    Nikolaidis, Nikolaos
    Iosifidis, Alexandros
    Pitas, Ioannis
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 2445 - 2452
  • [15] Combined kernel for fast GPU computation of Zernike moments
    Zengjun Zhao
    Xinkai Kuang
    Yukuan Zhu
    Yecheng Liang
    Yubo Xuan
    Journal of Real-Time Image Processing, 2021, 18 : 431 - 444
  • [16] Fast Adaptive Computation of Neighboring Atoms
    Redon, Stephane
    NSTI NANOTECH 2008, VOL 3, TECHNICAL PROCEEDINGS: MICROSYSTEMS, PHOTONICS, SENSORS, FLUIDICS, MODELING, AND SIMULATION, 2008, : 721 - +
  • [17] Fast computation in adaptive tree approximation
    Binev, P
    DeVore, R
    NUMERISCHE MATHEMATIK, 2004, 97 (02) : 193 - 217
  • [18] Combined kernel for fast GPU computation of Zernike moments
    Zhao, Zengjun
    Kuang, Xinkai
    Zhu, Yukuan
    Liang, Yecheng
    Xuan, Yubo
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2021, 18 (03) : 431 - 444
  • [19] Fast computation in adaptive tree approximation
    Peter Binev
    Ronald DeVore
    Numerische Mathematik, 2004, 97 : 193 - 217
  • [20] A spatially adaptive fast atmospheric correction algorithm
    Richter, R
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 1996, 17 (06) : 1201 - 1214