Fast computation of adaptive wavelet expansions

被引:0
|
作者
A. Barinka
W. Dahmen
R. Schneider
机构
[1] RWTH Aachen,Institut für Geometrie und Praktische Mathematik
[2] ITERGO Informationstechnologie GmbH,Scientific Computing
[3] CAU Kiel,undefined
来源
Numerische Mathematik | 2007年 / 105卷
关键词
41A25; 41A55; 41A46; 65D99; 65M12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we describe and analyze an algorithm for the fast computation of sparse wavelet coefficient arrays typically arising in adaptive wavelet solvers. The scheme improves on an earlier version from Dahmen et al. (Numer. Math. 86, 49–101, 2000) in several respects motivated by recent developments of adaptive wavelet schemes. The new structure of the scheme is shown to enhance its performance while a completely different approach to the error analysis accommodates the needs put forward by the above mentioned context of adaptive solvers. The results are illustrated by numerical experiments for one and two dimensional examples.
引用
收藏
页码:549 / 589
页数:40
相关论文
共 50 条
  • [1] Fast computation of adaptive wavelet expansions
    Barinka, A.
    Dahmen, W.
    Schneider, R.
    NUMERISCHE MATHEMATIK, 2007, 105 (04) : 549 - 589
  • [2] Nonlinear functionals of wavelet expansions - adaptive reconstruction and fast evaluation
    Dahmen, W
    Schneider, R
    Xu, YS
    NUMERISCHE MATHEMATIK, 2000, 86 (01) : 49 - 101
  • [3] Nonlinear functionals of wavelet expansions – adaptive reconstruction and fast evaluation
    Wolfgang Dahmen
    Reinhold Schneider
    Yuesheng Xu
    Numerische Mathematik, 2000, 86 : 49 - 101
  • [4] Efficient adaptive operator application on wavelet expansions
    Houdayer, J.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2014, 37 (01) : 52 - 68
  • [5] Signal representation by adaptive biased wavelet expansions
    Harrop Galvão, Roberto Kawakami
    Yoneyama, Takashi
    Rabello, Tânia Nunes
    Digital Signal Processing: A Review Journal, 1999, 9 (04): : 225 - 240
  • [6] Signal representation by adaptive biased wavelet expansions
    Galvao, RKH
    Yoneyama, T
    Rabello, TN
    DIGITAL SIGNAL PROCESSING, 1999, 9 (04) : 225 - 240
  • [7] Asymptotic expansions and fast computation of oscillatory Hilbert transforms
    Haiyong Wang
    Lun Zhang
    Daan Huybrechs
    Numerische Mathematik, 2013, 123 : 709 - 743
  • [8] Asymptotic expansions and fast computation of oscillatory Hilbert transforms
    Wang, Haiyong
    Zhang, Lun
    Huybrechs, Daan
    NUMERISCHE MATHEMATIK, 2013, 123 (04) : 709 - 743
  • [9] Fast adaptive expansions in local trigonometric bases
    Borup, L
    Nielsen, M
    SIGNAL PROCESSING, 2003, 83 (02) : 445 - 451
  • [10] Computation of decaying turbulence in an adaptive wavelet basis
    Fröhlich, J
    Schneider, K
    PHYSICA D, 1999, 134 (03): : 337 - 361