Fast computation of adaptive wavelet expansions

被引:0
|
作者
A. Barinka
W. Dahmen
R. Schneider
机构
[1] RWTH Aachen,Institut für Geometrie und Praktische Mathematik
[2] ITERGO Informationstechnologie GmbH,Scientific Computing
[3] CAU Kiel,undefined
来源
Numerische Mathematik | 2007年 / 105卷
关键词
41A25; 41A55; 41A46; 65D99; 65M12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we describe and analyze an algorithm for the fast computation of sparse wavelet coefficient arrays typically arising in adaptive wavelet solvers. The scheme improves on an earlier version from Dahmen et al. (Numer. Math. 86, 49–101, 2000) in several respects motivated by recent developments of adaptive wavelet schemes. The new structure of the scheme is shown to enhance its performance while a completely different approach to the error analysis accommodates the needs put forward by the above mentioned context of adaptive solvers. The results are illustrated by numerical experiments for one and two dimensional examples.
引用
收藏
页码:549 / 589
页数:40
相关论文
共 50 条
  • [41] A substitute for summability in wavelet expansions
    Walter, GG
    Shen, XP
    ANALYSIS OF DIVERGENCE: CONTROL AND MANAGEMENT OF DIVERGENT PROCESSES, 1999, : 51 - 63
  • [42] On the Gibbs phenomenon for wavelet expansions
    Shim, HT
    Volkmer, H
    JOURNAL OF APPROXIMATION THEORY, 1996, 84 (01) : 74 - 95
  • [43] Wavelet expansions on the Cantor group
    Farkov, Yu. A.
    MATHEMATICAL NOTES, 2014, 96 (5-6) : 996 - 1007
  • [44] Research on the fast adaptive filtering methods for the wavelet transform domain
    Peng, Zhiwei
    Bao, Zheng
    Liao, Guisheng
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 25 (04): : 420 - 425
  • [45] Convergence of periodic wavelet expansions
    Skopina, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 679 - 680
  • [46] A fast adaptive diffusion wavelet method for Burger's equation
    Goyal, Kavita
    Mehra, Mani
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (04) : 568 - 577
  • [47] POINTWISE CONVERGENCE OF WAVELET EXPANSIONS
    KELLY, SE
    KON, MA
    RAPHAEL, LA
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 30 (01) : 87 - 94
  • [48] Wavelet Expansions and Fractal Dimensions
    A. Kamont
    B. Wolnik
    Constructive Approximation, 1999, 15 : 97 - 108
  • [49] An adaptive digital watermark algorithm based on fast wavelet transform
    Feng Dengchao
    Yang Zhaoxuan
    He Yinghua
    Proceedings of the First International Symposium on Test Automation & Instrumentation, Vols 1 - 3, 2006, : 31 - 35
  • [50] Adaptive synthesis of a wavelet transform using fast neural network
    Stolarek, J.
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2011, 59 (01) : 9 - 13