Fast computation of spatially adaptive kernel estimates

被引:31
|
作者
Davies, Tilman M. [1 ]
Baddeley, Adrian [2 ,3 ]
机构
[1] Univ Otago, Dept Math & Stat, POB 56, Dunedin 9054, New Zealand
[2] Curtin Univ, Dept Math & Stat, GPO Box U1987, Perth, WA 6845, Australia
[3] CSIRO, Data61, Perth, WA, Australia
基金
澳大利亚研究理事会;
关键词
Bandwidth selection; Edge correction; Fourier transform; Intensity; Scale space; Spatial point process; DENSITY-ESTIMATION; BANDWIDTH SELECTION; SMOOTHING PARAMETER; CROSS-VALIDATION; BOOTSTRAP CHOICE; RISK; MATRICES;
D O I
10.1007/s11222-017-9772-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Kernel smoothing of spatial point data can often be improved using an adaptive, spatially varying bandwidth instead of a fixed bandwidth. However, computation with a varying bandwidth is much more demanding, especially when edge correction and bandwidth selection are involved. This paper proposes several new computational methods for adaptive kernel estimation from spatial point pattern data. A key idea is that a variable-bandwidth kernel estimator for d-dimensional spatial data can be represented as a slice of a fixed-bandwidth kernel estimator in -dimensional scale space, enabling fast computation using Fourier transforms. Edge correction factors have a similar representation. Different values of global bandwidth correspond to different slices of the scale space, so that bandwidth selection is greatly accelerated. Potential applications include estimation of multivariate probability density and spatial or spatiotemporal point process intensity, relative risk, and regression functions. The new methods perform well in simulations and in two real applications concerning the spatial epidemiology of primary biliary cirrhosis and the alarm calls of capuchin monkeys.
引用
收藏
页码:937 / 956
页数:20
相关论文
共 50 条
  • [21] Robust computation of mutual information using spatially adaptive meshes
    Sundar, Hari
    Shen, Dinggang
    Biros, George
    Xu, Chenyang
    Davatzikos, Christos
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2007, PT 1, PROCEEDINGS, 2007, 4791 : 950 - +
  • [22] Spatially adaptive fast particle level set method
    Huang, Xiao-Yun
    Li, Shao-Wu
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2010, 43 (11): : 981 - 987
  • [23] On the utility of asymptotic bandwidth selectors for spatially adaptive kernel density estimation
    Davies, Tilman M.
    Flynn, Claire R.
    Hazelton, Martin L.
    STATISTICS & PROBABILITY LETTERS, 2018, 138 : 75 - 81
  • [24] Fast adaptive kernel density estimator for data streams
    Boedihardjo, Arnold P.
    Lu, Chang-Tien
    Chen, Feng
    KNOWLEDGE AND INFORMATION SYSTEMS, 2015, 42 (02) : 285 - 317
  • [25] Fast adaptive kernel density estimator for data streams
    Arnold P. Boedihardjo
    Chang-Tien Lu
    Feng Chen
    Knowledge and Information Systems, 2015, 42 : 285 - 317
  • [26] Fast Computation of Marginalized Walk Kernel for Virtual Screening in Drug Discovery
    Preeja, M. P.
    Soman, K. P.
    PROCEEDINGS OF THE FIRST AMRITA ACM-W CELEBRATION OF WOMEN IN COMPUTING IN INDIA (A2WIC), 2010,
  • [27] Fast and accurate computation of the aberration kernel for the cosmic microwave background sky
    Chluba, J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 415 (04) : 3227 - 3236
  • [28] Kernel Estimates
    Gazzola, Filippo
    Grunau, Hans-Christoph
    Sweers, Guido
    POLYHARMONIC BOUNDARY VALUE PROBLEMS: POSITIVITY PRESERVING AND NONLINEAR HIGHER ORDER ELLIPTIC EQUATIONS IN BOUNDED DOMAINS, 2010, 1991 : 99 - 146
  • [29] Spatially-Adaptive Pixelwise Networks for Fast Image Translation
    Shaham, Tamar Rott
    Gharbi, Michael
    Zhang, Richard
    Shechtman, Eli
    Michaeli, Tomer
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 14877 - 14886
  • [30] Fast Computation of Discrete Optimal FIR Estimates in White Gaussian Noise
    Zhao, Shunyi
    Shmaliy, Yuriy S.
    Liu, Fei
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (06) : 718 - 722