Fast computation of spatially adaptive kernel estimates

被引:31
|
作者
Davies, Tilman M. [1 ]
Baddeley, Adrian [2 ,3 ]
机构
[1] Univ Otago, Dept Math & Stat, POB 56, Dunedin 9054, New Zealand
[2] Curtin Univ, Dept Math & Stat, GPO Box U1987, Perth, WA 6845, Australia
[3] CSIRO, Data61, Perth, WA, Australia
基金
澳大利亚研究理事会;
关键词
Bandwidth selection; Edge correction; Fourier transform; Intensity; Scale space; Spatial point process; DENSITY-ESTIMATION; BANDWIDTH SELECTION; SMOOTHING PARAMETER; CROSS-VALIDATION; BOOTSTRAP CHOICE; RISK; MATRICES;
D O I
10.1007/s11222-017-9772-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Kernel smoothing of spatial point data can often be improved using an adaptive, spatially varying bandwidth instead of a fixed bandwidth. However, computation with a varying bandwidth is much more demanding, especially when edge correction and bandwidth selection are involved. This paper proposes several new computational methods for adaptive kernel estimation from spatial point pattern data. A key idea is that a variable-bandwidth kernel estimator for d-dimensional spatial data can be represented as a slice of a fixed-bandwidth kernel estimator in -dimensional scale space, enabling fast computation using Fourier transforms. Edge correction factors have a similar representation. Different values of global bandwidth correspond to different slices of the scale space, so that bandwidth selection is greatly accelerated. Potential applications include estimation of multivariate probability density and spatial or spatiotemporal point process intensity, relative risk, and regression functions. The new methods perform well in simulations and in two real applications concerning the spatial epidemiology of primary biliary cirrhosis and the alarm calls of capuchin monkeys.
引用
收藏
页码:937 / 956
页数:20
相关论文
共 50 条
  • [31] Fast recursive computation of local axial moments by using primitive kernel functions
    Palenichka, RM
    PARALLEL COMPUTATION, 1999, 1557 : 596 - 597
  • [32] A kernel-based method for fast and accurate computation of PHT in polar coordinates
    Khalid M. Hosny
    Mohamed M. Darwish
    Journal of Real-Time Image Processing, 2019, 16 : 1235 - 1247
  • [33] A kernel-based method for fast and accurate computation of PHT in polar coordinates
    Hosny, Khalid M.
    Darwish, Mohamed M.
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2019, 16 (04) : 1235 - 1247
  • [34] Fast Algorithm for Choosing Blur Coefficients in Multidimensional Kernel Probability Density Estimates
    Lapko, A. V.
    Lapko, V. A.
    MEASUREMENT TECHNIQUES, 2019, 61 (10) : 979 - 986
  • [35] Fast Algorithm for Choosing Blur Coefficients in Multidimensional Kernel Probability Density Estimates
    A. V. Lapko
    V. A. Lapko
    Measurement Techniques, 2019, 61 : 979 - 986
  • [36] GRADIENT ESTIMATES AND HEAT KERNEL ESTIMATES
    QIAN, ZM
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1995, 125 : 975 - 990
  • [37] Spatially Adaptive Linear Precoding for Systems Beyond G.fast
    Stigant, Liam
    Zhang, Rong
    Humphrey, Leslie D.
    Linney, Trevor P.
    Morsman, Trevor
    Al Rawi, Anas F.
    2018 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2018,
  • [38] Kernel Bayesian Computation
    Nakagome, Shigeki
    Fukumizu, Kenji
    Mano, Shuhei
    GENES & GENETIC SYSTEMS, 2011, 86 (06) : 429 - 429
  • [39] COMPUTATION OF THE METAPLECTIC KERNEL
    Prasad, Gopal
    Rapinchuk, Andrei S.
    PUBLICATIONS MATHEMATIQUES DE L IHES, 1996, (84): : 91 - 187
  • [40] Fast Scale Adaptive Kernel Correlation Filtering Algorithm for Target Tracking
    He Xuedong
    Zhou Shengzong
    LASER & OPTOELECTRONICS PROGRESS, 2018, 55 (12)