Fast computation of spatially adaptive kernel estimates

被引:28
|
作者
Davies, Tilman M. [1 ]
Baddeley, Adrian [2 ,3 ]
机构
[1] Univ Otago, Dept Math & Stat, POB 56, Dunedin 9054, New Zealand
[2] Curtin Univ, Dept Math & Stat, GPO Box U1987, Perth, WA 6845, Australia
[3] CSIRO, Data61, Perth, WA, Australia
基金
澳大利亚研究理事会;
关键词
Bandwidth selection; Edge correction; Fourier transform; Intensity; Scale space; Spatial point process; DENSITY-ESTIMATION; BANDWIDTH SELECTION; SMOOTHING PARAMETER; CROSS-VALIDATION; BOOTSTRAP CHOICE; RISK; MATRICES;
D O I
10.1007/s11222-017-9772-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Kernel smoothing of spatial point data can often be improved using an adaptive, spatially varying bandwidth instead of a fixed bandwidth. However, computation with a varying bandwidth is much more demanding, especially when edge correction and bandwidth selection are involved. This paper proposes several new computational methods for adaptive kernel estimation from spatial point pattern data. A key idea is that a variable-bandwidth kernel estimator for d-dimensional spatial data can be represented as a slice of a fixed-bandwidth kernel estimator in -dimensional scale space, enabling fast computation using Fourier transforms. Edge correction factors have a similar representation. Different values of global bandwidth correspond to different slices of the scale space, so that bandwidth selection is greatly accelerated. Potential applications include estimation of multivariate probability density and spatial or spatiotemporal point process intensity, relative risk, and regression functions. The new methods perform well in simulations and in two real applications concerning the spatial epidemiology of primary biliary cirrhosis and the alarm calls of capuchin monkeys.
引用
收藏
页码:937 / 956
页数:20
相关论文
共 50 条
  • [1] Fast computation of spatially adaptive kernel estimates
    Tilman M. Davies
    Adrian Baddeley
    [J]. Statistics and Computing, 2018, 28 : 937 - 956
  • [2] Fast Poissonian image segmentation with a spatially adaptive kernel
    Chen, Dai-Qiang
    Cheng, Li-Zhi
    Du, Xin-Peng
    [J]. OPTIK, 2014, 125 (04): : 1507 - 1516
  • [3] Fast Computation of Kernel Estimators
    Raykar, Vikas C.
    Duraiswami, Ramani
    Zhao, Linda H.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (01) : 205 - 220
  • [4] Fast and accurate computation for kernel estimators
    Tang, Qingguo
    Karunamuni, Rohana J.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 94 : 49 - 62
  • [5] Adaptive eigenvalue computation: complexity estimates
    Wolfgang Dahmen
    Thorsten Rohwedder
    Reinhold Schneider
    Andreas Zeiser
    [J]. Numerische Mathematik, 2008, 110
  • [6] Adaptive eigenvalue computation: complexity estimates
    Dahmen, Wolfgang
    Rohwedder, Thorsten
    Schneider, Reinhold
    Zeiser, Andreas
    [J]. NUMERISCHE MATHEMATIK, 2008, 110 (03) : 277 - 312
  • [7] Spatially Adaptive Computation Time for Residual Networks
    Figurnov, Michael
    Collins, Maxwell D.
    Zhu, Yukun
    Zhang, Li
    Huang, Jonathan
    Vetrov, Dmitry
    Salakhutdinov, Ruslan
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 1790 - 1799
  • [8] A NOTE ON THE FAST COMPUTATION OF RESPONSE SPECTRA ESTIMATES
    REINOSO, E
    ORDAZ, M
    SANCHEZSESMA, FJ
    [J]. EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 1990, 19 (07): : 971 - 976
  • [9] Spatially Adaptive Kernel Regression Using Risk Estimation
    Krishnan, Sunder Ram
    Seelamantula, Chandra Sekhar
    Chakravarti, Purvasha
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (04) : 445 - 448
  • [10] Fast computation of adaptive wavelet expansions
    Barinka, A.
    Dahmen, W.
    Schneider, R.
    [J]. NUMERISCHE MATHEMATIK, 2007, 105 (04) : 549 - 589