Fast kernel matrix computation for big data clustering

被引:0
|
作者
20153401191949
机构
来源
关键词
Kernel k-Means is a basis for many state of the art global clustering approaches. When the number of samples grows too big; however; it is extremely time-consuming to compute the entire kernel matrix and it is impossible to store it in the memory of a single computer. The algorithm of Approximate Kernel k-Means has been proposed; which works using only a small part of the kernel matrix. The computation of the kernel matrix; even a part of it; remains a significant bottleneck of the process. Some types of kernel; can be computed using matrix multiplication. Modern CPU architectures and computational optimization methods allow for very fast matrix multiplication; thus those types of kernel matrices can be computed much faster than others. © The Authors. Published by Elsevier B.V;
D O I
暂无
中图分类号
学科分类号
摘要
112773
引用
收藏
相关论文
共 50 条
  • [1] Fast Kernel Matrix Computation for Big Data Clustering
    Tsapanos, Nikolaos
    Tefas, Anastasios
    Nikolaidis, Nikolaos
    Iosifidis, Alexandros
    Pitas, Ioannis
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 2445 - 2452
  • [2] Kernel Spectral Clustering for Big Data Networks
    Mall, Raghvendra
    Langone, Rocco
    Suykens, Johan A. K.
    ENTROPY, 2013, 15 (05) : 1567 - 1586
  • [3] Fast and effective Big Data exploration by clustering
    Ianni, Michele
    Masciari, Elio
    Mazzeo, Giuseppe M.
    Mezzanzanica, Mario
    Zaniolo, Carlo
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 102 : 84 - 94
  • [4] A scalable and fast OPTICS for clustering trajectory big data
    Ze Deng
    Yangyang Hu
    Mao Zhu
    Xiaohui Huang
    Bo Du
    Cluster Computing, 2015, 18 : 549 - 562
  • [5] A scalable and fast OPTICS for clustering trajectory big data
    Deng, Ze
    Hu, Yangyang
    Zhu, Mao
    Huang, Xiaohui
    Du, Bo
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2015, 18 (02): : 549 - 562
  • [6] Fast Computation of Kernel Estimators
    Raykar, Vikas C.
    Duraiswami, Ramani
    Zhao, Linda H.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (01) : 205 - 220
  • [7] MULTIDIMENSIONAL DATA CLUSTERING BASED ON FAST KERNEL DENSITY ESTIMATION
    Yin, Xun-Fu
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 311 - 315
  • [8] A Fast and Effective Multiple Kernel Clustering Method on Incomplete Data
    Xiang, Lingyun
    Zhao, Guohan
    Li, Qian
    Kim, Gwang-jun
    Alfarraj, Osama
    Tolba, Amr
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 67 (01): : 267 - 284
  • [9] Efficient MapReduce Kernel k-Means for Big Data Clustering
    Tsapanos, Nikolaos
    Tefas, Anastasios
    Nikolaidis, Nikolaos
    Pitas, Ioannis
    9TH HELLENIC CONFERENCE ON ARTIFICIAL INTELLIGENCE (SETN 2016), 2016,
  • [10] Fast kernel spectral clustering
    Langone, Rocco
    Suykens, Johan A. K.
    NEUROCOMPUTING, 2017, 268 : 27 - 33