Kernel Spectral Clustering for Big Data Networks

被引:49
|
作者
Mall, Raghvendra [1 ]
Langone, Rocco [1 ]
Suykens, Johan A. K. [1 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn ESAT SCD SISTA, B-3001 Louvain, Belgium
关键词
kernel spectral clustering; out-of-sample extensions; sampling graphs; angular similarity; COMMUNITY STRUCTURE;
D O I
10.3390/e15051567
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper shows the feasibility of utilizing the Kernel Spectral Clustering (KSC) method for the purpose of community detection in big data networks. KSC employs a primal-dual framework to construct a model. It results in a powerful property of effectively inferring the community affiliation for out-of-sample extensions. The original large kernel matrix cannot fitinto memory. Therefore, we select a smaller subgraph that preserves the overall community structure to construct the model. It makes use of the out-of-sample extension property for community membership of the unseen nodes. We provide a novel memory-and computationally efficient model selection procedure based on angular similarity in the eigenspace. We demonstrate the effectiveness of KSC on large scale synthetic networks and real world networks like the YouTube network, a road network of California and the Livejournal network. These networks contain millions of nodes and several million edges.
引用
收藏
页码:1567 / 1586
页数:20
相关论文
共 50 条
  • [1] Denoised Kernel Spectral Data Clustering
    Mall, Raghvendra
    Bensmail, Halima
    Langone, Rocco
    Varon, Carolina
    Suykens, Johan A. K.
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 3709 - 3716
  • [2] Understanding Big Data Spectral Clustering
    Couillet, Romain
    Benaych-Georges, Florent
    [J]. 2015 IEEE 6TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2015, : 29 - 32
  • [3] Kernel spectral clustering of large dimensional data
    Couillet, Romain
    Benaych-Georges, Florent
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01): : 1393 - 1454
  • [4] Agglomerative Hierarchical Kernel Spectral Data Clustering
    Mall, Raghvendra
    Langone, Rocco
    Suykens, Johan A. K.
    [J]. 2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING (CIDM), 2014, : 9 - 16
  • [5] Fast kernel matrix computation for big data clustering
    20153401191949
    [J]. (1) Aristotle University of Thessaloniki, Thessaloniki, Greece, (Elsevier B.V., Netherlands):
  • [6] Fast Kernel Matrix Computation for Big Data Clustering
    Tsapanos, Nikolaos
    Tefas, Anastasios
    Nikolaidis, Nikolaos
    Iosifidis, Alexandros
    Pitas, Ioannis
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 2445 - 2452
  • [7] Kernel spectral clustering for community detection in complex networks
    Langone, Rocco
    Alzate, Carlos
    Suykens, Johan A. K.
    [J]. 2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [8] Kernel Spectral Clustering for dynamic data using Multiple Kernel Learning
    Peluffo-Ordonez, D.
    Garcia-Vega, S.
    Langone, R.
    Suykens, J. A. K.
    Castellanos-Dominguez, G.
    [J]. 2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [9] Clustering data over time using kernel spectral clustering with memory
    Langone, Rocco
    Mall, Raghvendra
    Suykens, Johan A. K.
    [J]. 2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING (CIDM), 2014, : 1 - 8
  • [10] Efficient MapReduce Kernel k-Means for Big Data Clustering
    Tsapanos, Nikolaos
    Tefas, Anastasios
    Nikolaidis, Nikolaos
    Pitas, Ioannis
    [J]. 9TH HELLENIC CONFERENCE ON ARTIFICIAL INTELLIGENCE (SETN 2016), 2016,