Agglomerative Hierarchical Kernel Spectral Data Clustering

被引:0
|
作者
Mall, Raghvendra [1 ]
Langone, Rocco [1 ]
Suykens, Johan A. K. [1 ]
机构
[1] Katholieke Univ Leuven, ESAT STADIUS, B-3001 Leuven, Belgium
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we extend the agglomerative hierarchical kernel spectral clustering (AH-KSC [1]) technique from networks to datasets and images. The kernel spectral clustering (KSC) technique builds a clustering model in a primaldual optimization framework. The dual solution leads to an eigen-decomposition. The clustering model consists of kernel evaluations, projections onto the eigenvectors and a powerful out-of-sample extension property. We first estimate the optimal model parameters using the balanced angular fitting (BAF) [2] criterion. We then exploit the eigen-projections corresponding to these parameters to automatically identify a set of increasing distance thresholds. These distance thresholds provide the clusters at different levels of hierarchy in the dataset which are merged in an agglomerative fashion as shown in [1], [4]. We showcase the effectiveness of the AH- KSC method on several datasets and real world images. We compare the AH- KSC method with several agglomerative hierarchical clustering techniques and overcome the issues of hierarchical KSC technique proposed in [5].
引用
收藏
页码:9 / 16
页数:8
相关论文
共 50 条
  • [1] The impact of isolation kernel on agglomerative hierarchical clustering algorithms
    Han, Xin
    Zhu, Ye
    Ting, Kai Ming
    Li, Gang
    [J]. PATTERN RECOGNITION, 2023, 139
  • [2] Agglomerative hierarchical clustering for data with tolerance
    Yasunori, Endo
    Yukihiro, Hamasuna
    Sadaaki, Miyamoto
    [J]. GRC: 2007 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, PROCEEDINGS, 2007, : 404 - 409
  • [3] Hierarchical kernel spectral clustering
    Alzate, Carlos
    Suykens, Johan A. K.
    [J]. NEURAL NETWORKS, 2012, 35 : 21 - 30
  • [4] Agglomerative hierarchical clustering for nonlinear data analysis
    Wattanachon, U
    Lursinsap, C
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 1420 - 1425
  • [5] Parallel Hierarchical Agglomerative Clustering for fMRI Data
    Angeletti, Melodie
    Bonny, Jean-Marie
    Durif, Franck
    Koko, Jonas
    [J]. PARALLEL PROCESSING AND APPLIED MATHEMATICS (PPAM 2017), PT I, 2018, 10777 : 265 - 275
  • [6] Application of Agglomerative Hierarchical Clustering for Clustering of Time Series Data
    Radovanovic, Ana
    Li, Junshi
    Milanovic, Jovica, V
    Milosavljevic, Nina
    Storchi, Riccardo
    [J]. 2020 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE 2020): SMART GRIDS: KEY ENABLERS OF A GREEN POWER SYSTEM, 2020, : 640 - 644
  • [7] Scalable Hierarchical Agglomerative Clustering
    Monath, Nicholas
    Dubey, Kumar Avinava
    Guruganesh, Guru
    Zaheer, Manzil
    Ahmed, Amr
    McCallum, Andrew
    Mergen, Gokhan
    Najork, Marc
    Terzihan, Mert
    Tjanaka, Bryon
    Wang, Yuan
    Wu, Yuchen
    [J]. KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 1245 - 1255
  • [8] HIERARCHICAL AGGLOMERATIVE CLUSTERING PROCEDURE
    LUKASOVA, A
    [J]. PATTERN RECOGNITION, 1979, 11 (5-6) : 365 - 381
  • [9] Efficient agglomerative hierarchical clustering
    Bouguettaya, Athman
    Yu, Qi
    Liu, Xumin
    Zhou, Xiangmin
    Song, Andy
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (05) : 2785 - 2797
  • [10] OBJECT ORIENTED AGGLOMERATIVE HIERARCHICAL CLUSTERING MODEL IN DATA MINING
    Yesilbudak, Mehmet
    Kahraman, Hamdi Tolga
    Karacan, Hacer
    [J]. JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2011, 26 (01): : 27 - 39